亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A proliferation of Large Language Models (the GPT series, BLOOM, LLaMA, and more) are driving forward novel development of multipurpose AI for a variety of tasks, particularly natural language processing (NLP) tasks. These models demonstrate strong performance on a range of tasks; however, there has been evidence of brittleness when applied to more niche or narrow domains where hallucinations or fluent but incorrect responses reduce performance. Given the complex nature of scientific domains, it is prudent to investigate the trade-offs of leveraging off-the-shelf versus more targeted foundation models for scientific domains. In this work, we examine the benefits of in-domain pre-training for a given scientific domain, chemistry, and compare these to open-source, off-the-shelf models with zero-shot and few-shot prompting. Our results show that not only do in-domain base models perform reasonably well on in-domain tasks in a zero-shot setting but that further adaptation using instruction fine-tuning yields impressive performance on chemistry-specific tasks such as named entity recognition and molecular formula generation.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · state-of-the-art · 值域 · 查準率/準確率 · Integration ·
2024 年 12 月 18 日

Radau IIA methods, specifically the adaptive order radau method in Fortran due to Hairer, are known to be state-of-the-art for the high-accuracy solution of highly stiff ordinary differential equations (ODEs). However, the traditional implementation was specialized to a specific range of tolerance, in particular only supporting 5th, 9th, and 13th order versions of the tableau and only derived in double precision floating point, thus limiting the ability to be truly general purpose for highly accurate scenarios. To alleviate these constraints, we implement an adaptive-time adaptive-order Radau method which can derive the coefficients for the Radau IIA embedded tableau to any order on the fly to any precision. Additionally, our Julia-based implementation includes many modernizations to improve performance, including improvements to the order adaptation scheme and improved linear algebra integrations. In a head-to-head benchmark against the classic Fortran implementation, we demonstrate our implementation is approximately 2x across a range of stiff ODEs. We benchmark our algorithm against several well-reputed numerical integrators for stiff ODEs and find state-of-the-art performance on several test problems, with a 1.5-times speed-up over common numerical integrators for stiff ODEs when low error tolerance is required. The newly implemented method is distributed in open source software for free usage on stiff ODEs.

This paper presents the Text Encoding Diffusion Model (TEncDM), a novel approach to diffusion modeling that operates in the space of pre-trained language model encodings. In contrast to traditionally used embeddings, encodings integrate contextual information. In our approach, we also employ a transformer-based decoder, specifically designed to incorporate context in the token prediction process. We conduct a comprehensive examination of the influence of the encoder, decoder, noise scheduler, and self-conditioning on zero-shot generation. Furthermore, we compare TEncDM with previous approaches on three conditional text generation tasks: QQP, XSum, and Wiki-Auto. The results show that TEncDM exhibits superior performance compared to existing non-autoregressive diffusion models. Our code is available at //github.com/M0RJIQUE/tencdm.

The emergence of large-scale Mixture of Experts (MoE) models has marked a significant advancement in artificial intelligence, offering enhanced model capacity and computational efficiency through conditional computation. However, the deployment and inference of these models present substantial challenges in terms of computational resources, latency, and energy efficiency. This comprehensive survey systematically analyzes the current landscape of inference optimization techniques for MoE models across the entire system stack. We first establish a taxonomical framework that categorizes optimization approaches into model-level, system-level, and hardware-level optimizations. At the model level, we examine architectural innovations including efficient expert design, attention mechanisms, various compression techniques such as pruning, quantization, and knowledge distillation, as well as algorithm improvement including dynamic routing strategies and expert merging methods. At the system level, we investigate distributed computing approaches, load balancing mechanisms, and efficient scheduling algorithms that enable scalable deployment. Furthermore, we delve into hardware-specific optimizations and co-design strategies that maximize throughput and energy efficiency. This survey not only provides a structured overview of existing solutions but also identifies key challenges and promising research directions in MoE inference optimization. Our comprehensive analysis serves as a valuable resource for researchers and practitioners working on large-scale deployment of MoE models in resource-constrained environments. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE inference optimization research, we have established a repository accessible at \url{//github.com/MoE-Inf/awesome-moe-inference/}.

Large Language Models (LLMs) show impressive inductive reasoning capabilities, enabling them to generate hypotheses that could generalize effectively to new instances when guided by in-context demonstrations. However, in real-world applications, LLMs' hypothesis generation is not solely determined by these demonstrations but is significantly shaped by task-specific model priors. Despite their critical influence, the distinct contributions of model priors versus demonstrations to hypothesis generation have been underexplored. This study bridges this gap by systematically evaluating three inductive reasoning strategies across five real-world tasks with three LLMs. Our empirical findings reveal that, hypothesis generation is primarily driven by the model's inherent priors; removing demonstrations results in minimal loss of hypothesis quality and downstream usage. Further analysis shows the result is consistent across various label formats with different label configurations, and prior is hard to override, even under flipped labeling. These insights advance our understanding of the dynamics of hypothesis generation in LLMs and highlight the potential for better utilizing model priors in real-world inductive reasoning tasks.

LLMs have long demonstrated remarkable effectiveness in automatic program repair (APR), with OpenAI's ChatGPT being one of the most widely used models in this domain. Through continuous iterations and upgrades of GPT-family models, their performance in fixing bugs has already reached state-of-the-art levels. However, there are few works comparing the effectiveness and variations of different versions of GPT-family models on APR. In this work, inspired by the recent public release of the GPT-o1 models, we conduct the first study to compare the effectiveness of different versions of the GPT-family models in APR. We evaluate the performance of the latest version of the GPT-family models (i.e., O1-preview and O1-mini), GPT-4o, and the historical version of ChatGPT on APR. We conduct an empirical study of the four GPT-family models against other LLMs and APR techniques on the QuixBugs benchmark from multiple evaluation perspectives, including repair success rate, repair cost, response length, and behavior patterns. The results demonstrate that O1's repair capability exceeds that of prior GPT-family models, successfully fixing all 40 bugs in the benchmark. Our work can serve as a foundation for further in-depth exploration of the applications of GPT-family models in APR.

High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.

Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.

Indoor Delivery Robots (IDRs) play a vital role in the upcoming fourth industrial revolution, autonomously navigating and transporting items within indoor environments. In this work, we thus aim to conduct the first security analysis of the IDR systems considering both cyber- and physical-layer attack surface and domain-specific attack goals across security, safety, and privacy. As initial results, we formulated a general IDR system architecture from 40 commercial IDR models and then performed an initial cyber-physical attack entry point identification. We also performed an experimental analysis of a real commercial IDR robot-side software and identified several vulnerabilities. We then discuss future steps.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司