亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing growth of applications' memory capacity and performance demands has led the CPU vendors to deploy heterogeneous memory systems either within a single system or via disaggregation. For instance, systems like Intel's Knights Landing and Sapphire Rapids can be configured to use high bandwidth memory as a cache to main memory. While there is significant research investigating the designs of DRAM caches, there has been little research investigating DRAM caches from a full system point of view, because there is not a suitable model available to the community to accurately study largescale systems with DRAM caches at a cycle-level. In this work we describe a new cycle-level DRAM cache model in the gem5 simulator which can be used for heterogeneous and disaggregated systems. We believe this model enables the community to perform a design space exploration for future generation of memory systems supporting DRAM caches.

相關內容

For companies developing web-based applications, the Dev and the Ops refer to different groups with either operational or development focus. Therefore, DevOps help these companies streamline software development and operations activities by emphasizing the collaboration between the two groups. However, for companies producing software-intensive products, the Ops would refer to customers who use and operate the product. In addition, companies producing software-intensive products do not only offer products to customers but rather Product Service Systems (PSS), where product-related services play a key role in ensuring customer satisfaction besides their significant revenue contribution. Thus, the context of product-oriented PSS is very different from web-based applications, making it difficult to apply DevOps without considering the role of the services. Therefore, based on a two years participant observation case study conducted at a multinational telecommunications systems provider, we propose a new and novel approach called Development-Services-Operations (DevServOps) which incorporates services as a key player facilitating an end-to-end software flow toward customers in one direction and feedback toward developers in the other direction. Services become the glue that connects the Dev and the Ops, achieved by providing internal services to increase the precision of the development organization and external services to increase the speed of deployment and new content adoption on the customers' side.

Network flow problems, which involve distributing traffic over a network such that the underlying infrastructure is used effectively, are ubiquitous in transportation and logistics. Among them, the Multi-Commodity Network Flow (MCNF) problem is of general interest, as it concerns the distribution of multiple flows of different sizes between several sources and sinks, while achieving effective utilization of the links. Due to the appeal of data-driven optimization, these problems have increasingly been approached using graph learning methods. In this paper, we propose a novel graph learning architecture for network flow problems called Per-Edge Weights (PEW). This method builds on a Graph Attention Network and uses distinctly parametrized message functions along each link. We extensively evaluate the proposed solution through an Internet flow routing case study using $17$ Service Provider topologies and $2$ routing schemes. We show that PEW yields substantial gains over architectures whose global message function constrains the routing unnecessarily. We also find that an MLP is competitive with other standard architectures. Furthermore, we shed some light on the relationship between graph structure and predictive performance for data-driven routing of flows, an aspect that has not been considered by existing work in the area.

Although Connected Vehicles (CVs) have demonstrated tremendous potential to enhance traffic operations, they can impose privacy risks on individual travelers, e.g., leaking sensitive information about their frequently visited places, routing behavior, etc. Despite the large body of literature that devises various algorithms to exploit CV information, research on privacy-preserving traffic control is still in its infancy. In this paper, we aim to fill this research gap and propose a privacy-preserving adaptive traffic signal control method using CV data. Specifically, we leverage secure Multi-Party Computation and differential privacy to devise a privacy-preserving CV data aggregation mechanism, which can calculate key traffic quantities without any CVs having to reveal their private data. We further develop a linear optimization model for adaptive signal control based on the traffic variables obtained via the data aggregation mechanism. The proposed linear programming problem is further extended to a stochastic programming problem to explicitly handle the noises added by the differentially private mechanism. Evaluation results show that the linear optimization model preserves privacy with a marginal impact on control performance, and the stochastic programming model can significantly reduce residual queues compared to the linear programming model, with almost no increase in vehicle delay. Overall, our methods demonstrate the feasibility of incorporating privacy-preserving mechanisms in CV-based traffic modeling and control, which guarantees both utility and privacy.

Research in Fairness, Accountability, Transparency, and Ethics (FATE) has established many sources and forms of algorithmic harm, in domains as diverse as health care, finance, policing, and recommendations. Much work remains to be done to mitigate the serious harms of these systems, particularly those disproportionately affecting marginalized communities. Despite these ongoing harms, new systems are being developed and deployed which threaten the perpetuation of the same harms and the creation of novel ones. In response, the FATE community has emphasized the importance of anticipating harms. Our work focuses on the anticipation of harms from increasingly agentic systems. Rather than providing a definition of agency as a binary property, we identify 4 key characteristics which, particularly in combination, tend to increase the agency of a given algorithmic system: underspecification, directness of impact, goal-directedness, and long-term planning. We also discuss important harms which arise from increasing agency -- notably, these include systemic and/or long-range impacts, often on marginalized stakeholders. We emphasize that recognizing agency of algorithmic systems does not absolve or shift the human responsibility for algorithmic harms. Rather, we use the term agency to highlight the increasingly evident fact that ML systems are not fully under human control. Our work explores increasingly agentic algorithmic systems in three parts. First, we explain the notion of an increase in agency for algorithmic systems in the context of diverse perspectives on agency across disciplines. Second, we argue for the need to anticipate harms from increasingly agentic systems. Third, we discuss important harms from increasingly agentic systems and ways forward for addressing them. We conclude by reflecting on implications of our work for anticipating algorithmic harms from emerging systems.

Although the complete scope of the sixth generation of mobile technologies (6G) is still unclear, the prominence of the Internet of Things (IoT) and Artificial Intelligence (AI) / Machine Learning (ML) in the networking field is undeniable. In this regard, key technology enablers for the previous generation, 5G, such as software-defined networking and network function virtualization, fall short to accomplish the stringent requirements envisioned for 6G verticals. This PhD thesis goes back to basics, by exploring missing functionality gaps in relation to these technologies, in order to provide the ''glue'' for holistic and fully-fledged networking solutions for 6G, aligned with standards and industry recommendations. Although ambitious, and in a very early stage, this PhD thesis illustrates an initial design for in-band control in Software-Defined Networking (SDN) that could facilitate the interoperability among constrained IoT devices. The current design demonstrates promising results in terms of resource-usage and robustness, which are pivotal features for constrained networks. Next steps include the integration of the approach with a real testbed comprised of constrained IoT devices and the implementation of a federated learning environment at the edge.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

北京阿比特科技有限公司