亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Surface cracks are a common sight on public infrastructure nowadays. Recent work has been addressing this problem by supporting structural maintenance measures using machine learning methods. Those methods are used to segment surface cracks from their background, making them easier to localize. However, a common issue is that to create a well-functioning algorithm, the training data needs to have detailed annotations of pixels that belong to cracks. Our work proposes a weakly supervised approach that leverages a CNN classifier in a novel way to create surface crack pseudo labels. First, we use the classifier to create a rough crack localization map by using its class activation maps and a patch based classification approach and fuse this with a thresholding based approach to segment the mostly darker crack pixels. The classifier assists in suppressing noise from the background regions, which commonly are incorrectly highlighted as cracks by standard thresholding methods. Then, the pseudo labels can be used in an end-to-end approach when training a standard CNN for surface crack segmentation. Our method is shown to yield sufficiently accurate pseudo labels. Those labels, incorporated into segmentation CNN training using multiple recent crack segmentation architectures, achieve comparable performance to fully supervised methods on four popular crack segmentation datasets.

相關內容

 Surface 是微軟公司( )旗下一系(xi)(xi)列(lie)使用 Windows 10(早期為 Windows 8.X)操作系(xi)(xi)統(tong)的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三(san)個系(xi)(xi)列(lie)。 2012 年 6 月 18 日(ri),初代(dai) Surface Pro/RT 由時任(ren)微軟 CEO 史蒂夫·鮑爾默發布于在洛(luo)杉(shan)磯舉行的記(ji)者會,2012 年 10 月 26 日(ri)上市銷(xiao)售。

Diffusion models have shown impressive performance for generative modelling of images. In this paper, we present a novel semantic segmentation method based on diffusion models. By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images. To generate an image specific segmentation, we train the model on the ground truth segmentation, and use the image as a prior during training and in every step during the sampling process. With the given stochastic sampling process, we can generate a distribution of segmentation masks. This property allows us to compute pixel-wise uncertainty maps of the segmentation, and allows an implicit ensemble of segmentations that increases the segmentation performance. We evaluate our method on the BRATS2020 dataset for brain tumor segmentation. Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, detailed uncertainty maps.

Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.

Deep learning has significantly improved the precision of instance segmentation with abundant labeled data. However, in many areas like medical and manufacturing, collecting sufficient data is extremely hard and labeling this data requires high professional skills. We follow this motivation and propose a new task set named zero-shot instance segmentation (ZSI). In the training phase of ZSI, the model is trained with seen data, while in the testing phase, it is used to segment all seen and unseen instances. We first formulate the ZSI task and propose a method to tackle the challenge, which consists of Zero-shot Detector, Semantic Mask Head, Background Aware RPN and Synchronized Background Strategy. We present a new benchmark for zero-shot instance segmentation based on the MS-COCO dataset. The extensive empirical results in this benchmark show that our method not only surpasses the state-of-the-art results in zero-shot object detection task but also achieves promising performance on ZSI. Our approach will serve as a solid baseline and facilitate future research in zero-shot instance segmentation.

This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning ($S^4L$) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that $S^4L$ and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.

In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolve the conflicts between semantic and instance segmentation. Additionally, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves state-of-the-art performance with much faster inference.

We present a new method that learns to segment and cluster images without labels of any kind. A simple loss based on information theory is used to extract meaningful representations directly from raw images. This is achieved by maximising mutual information of images known to be related by spatial proximity or randomized transformations, which distills their shared abstract content. Unlike much of the work in unsupervised deep learning, our learned function outputs segmentation heatmaps and discrete classifications labels directly, rather than embeddings that need further processing to be usable. The loss can be formulated as a convolution, making it the first end-to-end unsupervised learning method that learns densely and efficiently for semantic segmentation. Implemented using realistic settings on generic deep neural network architectures, our method attains superior performance on COCO-Stuff and ISPRS-Potsdam for segmentation and STL for clustering, beating state-of-the-art baselines.

Weak supervision, e.g., in the form of partial labels or image tags, is currently attracting significant attention in CNN segmentation as it can mitigate the lack of full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output, for instance, on the size of the target region, can leverage unlabeled data, guiding training with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However,constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons.To the best of our knowledge, the method of Pathak et al. is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals)from weak labels, mimicking full supervision and facilitating dual optimization.We propose to introduce a differentiable term, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly,it yields substantially better results than the proposal-based constrained CNNs, while reducing the computational demand for training.In the context of cardiac images, we reached a segmentation performance close to full supervision using a fraction (0.1%) of the full ground-truth labels and image-level tags.While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints.Therefore, it has the potential to close the gap between weakly and fully supervised learning in semantic image segmentation.

This paper tackles the problem of video object segmentation, given some user annotation which indicates the object of interest. The problem is formulated as pixel-wise retrieval in a learned embedding space: we embed pixels of the same object instance into the vicinity of each other, using a fully convolutional network trained by a modified triplet loss as the embedding model. Then the annotated pixels are set as reference and the rest of the pixels are classified using a nearest-neighbor approach. The proposed method supports different kinds of user input such as segmentation mask in the first frame (semi-supervised scenario), or a sparse set of clicked points (interactive scenario). In the semi-supervised scenario, we achieve results competitive with the state of the art but at a fraction of computation cost (275 milliseconds per frame). In the interactive scenario where the user is able to refine their input iteratively, the proposed method provides instant response to each input, and reaches comparable quality to competing methods with much less interaction.

Weakly supervised instance segmentation with image-level labels, instead of expensive pixel-level masks, remains unexplored. In this paper, we tackle this challenging problem by exploiting class peak responses to enable a classification network for instance mask extraction. With image labels supervision only, CNN classifiers in a fully convolutional manner can produce class response maps, which specify classification confidence at each image location. We observed that local maximums, i.e., peaks, in a class response map typically correspond to strong visual cues residing inside each instance. Motivated by this, we first design a process to stimulate peaks to emerge from a class response map. The emerged peaks are then back-propagated and effectively mapped to highly informative regions of each object instance, such as instance boundaries. We refer to the above maps generated from class peak responses as Peak Response Maps (PRMs). PRMs provide a fine-detailed instance-level representation, which allows instance masks to be extracted even with some off-the-shelf methods. To the best of our knowledge, we for the first time report results for the challenging image-level supervised instance segmentation task. Extensive experiments show that our method also boosts weakly supervised pointwise localization as well as semantic segmentation performance, and reports state-of-the-art results on popular benchmarks, including PASCAL VOC 2012 and MS COCO.

The Normalized Cut (NCut) objective function, widely used in data clustering and image segmentation, quantifies the cost of graph partitioning in a way that biases clusters or segments that are balanced towards having lower values than unbalanced partitionings. However, this bias is so strong that it avoids any singleton partitions, even when vertices are very weakly connected to the rest of the graph. Motivated by the B\"uhler-Hein family of balanced cut costs, we propose the family of Compassionately Conservative Balanced (CCB) Cut costs, which are indexed by a parameter that can be used to strike a compromise between the desire to avoid too many singleton partitions and the notion that all partitions should be balanced. We show that CCB-Cut minimization can be relaxed into an orthogonally constrained $\ell_{\tau}$-minimization problem that coincides with the problem of computing Piecewise Flat Embeddings (PFE) for one particular index value, and we present an algorithm for solving the relaxed problem by iteratively minimizing a sequence of reweighted Rayleigh quotients (IRRQ). Using images from the BSDS500 database, we show that image segmentation based on CCB-Cut minimization provides better accuracy with respect to ground truth and greater variability in region size than NCut-based image segmentation.

北京阿比特科技有限公司