亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the development of deep learning and natural language processing techniques, pre-trained language models have been widely used to solve information retrieval (IR) problems. Benefiting from the pre-training and fine-tuning paradigm, these models achieve state-of-the-art performance. In previous works, plain texts in Wikipedia have been widely used in the pre-training stage. However, the rich structured information in Wikipedia, such as the titles, abstracts, hierarchical heading (multi-level title) structure, relationship between articles, references, hyperlink structures, and the writing organizations, has not been fully explored. In this paper, we devise four pre-training objectives tailored for IR tasks based on the structured knowledge of Wikipedia. Compared to existing pre-training methods, our approach can better capture the semantic knowledge in the training corpus by leveraging the human-edited structured data from Wikipedia. Experimental results on multiple IR benchmark datasets show the superior performance of our model in both zero-shot and fine-tuning settings compared to existing strong retrieval baselines. Besides, experimental results in biomedical and legal domains demonstrate that our approach achieves better performance in vertical domains compared to previous models, especially in scenarios where long text similarity matching is needed.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Extensibility · 網絡爬蟲 · INFORMS · Learning ·
2024 年 2 月 16 日

In-context learning of large-language models (LLMs) has achieved remarkable success in the field of natural language processing, while extensive case studies reveal that the single-step chain-of-thought prompting approach faces challenges such as attention diffusion and inadequate performance in complex tasks like text-to-SQL. To improve the contextual learning capabilities of LLMs in text-to-SQL, a workflow paradigm method is proposed, aiming to enhance the attention and problem-solving scope of LLMs through decomposition. Specifically, the information determination module for eliminating redundant information and the brand-new prompt structure based on problem classification greatly enhance the model's attention. Additionally, the inclusion of self-correcting and active learning modules greatly expands the problem-solving scope of LLMs, hence improving the upper limit of LLM-based approaches. Extensive experiments conducted on three datasets demonstrate that our approach outperforms other methods by a significant margin. About 2-3 percentage point improvements compared to the existing baseline on the Spider Dev and Spider-Realistic datasets and new SOTA results on the Spider Test dataset are achieved. Our code is available on GitHub: \url{//github.com/FlyingFeather/DEA-SQL}.

Code-trained language models have proven to be highly effective for various code intelligence tasks. However, they can be challenging to train and deploy for many software engineering applications due to computational bottlenecks and memory constraints. Implementing effective strategies to address these issues requires a better understanding of these 'black box' models. In this paper, we perform the first neuron-level analysis for source code models to identify \textit{important} neurons within latent representations. We achieve this by eliminating neurons that are highly similar or irrelevant to the given task. This approach helps us understand which neurons and layers can be eliminated (redundancy analysis) and where important code properties are located within the network (concept analysis). Using redundancy analysis, we make observations relevant to knowledge transfer and model optimization applications. We find that over 95\% of the neurons are redundant with respect to our code intelligence tasks and can be eliminated without significant loss in accuracy. We also discover several subsets of neurons that can make predictions with baseline accuracy. Through concept analysis, we explore the traceability and distribution of human-recognizable concepts within latent code representations which could be used to influence model predictions. We trace individual and subsets of important neurons to specific code properties and identify 'number' neurons, 'string' neurons, and higher-level 'text' neurons for token-level tasks and higher-level concepts important for sentence-level downstream tasks. This also helps us understand how decomposable and transferable task-related features are and can help devise better techniques for transfer learning, model compression, and the decomposition of deep neural networks into modules.

We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around $10\%$ GPU hours compared with multi-objective RL baseline.

Is preferred tokenization for humans also preferred for machine-learning (ML) models? This study examines the relations between preferred tokenization for humans (appropriateness and readability) and one for ML models (performance on an NLP task). The question texts of the Japanese commonsense question-answering dataset are tokenized with six different tokenizers, and the performances of human annotators and ML models were compared. Furthermore, we analyze relations among performance of answers by human and ML model, the appropriateness of tokenization for human, and response time to questions by human. This study provides a quantitative investigation result that shows that preferred tokenizations for humans and ML models are not necessarily always the same. The result also implies that existing methods using language models for tokenization could be a good compromise both for human and ML models.

With the widespread adoption of large language models (LLMs) in numerous applications, the challenge of factuality and the propensity for hallucinations raises significant concerns. To address this issue, particularly in retrieval-augmented in-context learning, we introduce the hierarchical graph of thoughts (HGOT), a structured, multi-layered graph approach designed to enhance the retrieval of pertinent passages during in-context learning. The framework utilizes the emergent planning capabilities of LLMs, employing the divide-and-conquer strategy to break down complex queries into manageable sub-queries. It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics to assess the quality of thoughts, linking an answer's credibility intrinsically to the thought's quality. This methodology introduces a weighted system in majority voting, prioritizing answers based on the citation quality of their thoughts. Additionally, we propose a scoring mechanism for evaluating retrieved passages, considering factors such as citation frequency and quality, self-consistency confidence, and the retrieval module's ranking. Experiments reveal that HGOT outperforms other retrieval-augmented in-context learning methods, including Demonstrate-Search-Predict (DSP), ReAct, Self-Ask, and Retrieve-then-Read on different datasets by as much as $7\%$, demonstrating its efficacy in enhancing the factuality of LLMs.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second generic domain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available at //github.com/jayleicn/ClipBERT

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

北京阿比特科技有限公司