亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) is a novel machine learning framework, which enables multiple distributed devices cooperatively training a shared model scheduled by a central server while protecting private data locally. However, the non-independent-and-identically-distributed (Non-IID) data samples and frequent communication among participants will slow down the convergent rate and increase communication costs. To achieve fast convergence, we ameliorate the local gradient descend approach in conventional local update rule by introducing the aggregated gradients at each local update epoch, and propose an adaptive learning rate algorithm that further takes the deviation of local parameter and global parameter into consideration at each iteration. The above strategy requires all clients' local parameters and gradients at each local iteration, which is challenging as there is no communication during local update epochs. Accordingly, we utilize mean field approach by introducing two mean field terms to estimate the average local parameters and gradients respectively, which does not require clients to exchange their private information with each other at each local update epoch. Numerical results show that our proposed framework is superior to the state-of-art schemes in model accuracy and convergent rate on both IID and Non-IID dataset.

相關內容

梯度的本意是一個向量(矢量),表示某一函數在該點處的方向導數沿著該方向取得最大值,即函數在該點處沿著該方向(此梯度的方向)變化最快,變化率最大(為該梯度的模)。

The development of Policy Iteration (PI) has inspired many recent algorithms for Reinforcement Learning (RL), including several policy gradient methods, that gained both theoretical soundness and empirical success on a variety of tasks. The theory of PI is rich in the context of centralized learning, but its study is still in the infant stage under the federated setting. This paper explores the federated version of Approximate PI (API) and derives its error bound, taking into account the approximation error introduced by environment heterogeneity. We theoretically prove that a proper client selection scheme can reduce this error bound. Based on the theoretical result, we propose a client selection algorithm to alleviate the additional approximation error caused by environment heterogeneity. Experiment results show that the proposed algorithm outperforms other biased and unbiased client selection methods on the federated mountain car problem by effectively selecting clients with a lower level of heterogeneity from the population distribution.

When the data used for reinforcement learning (RL) are collected by multiple agents in a distributed manner, federated versions of RL algorithms allow collaborative learning without the need of sharing local data. In this paper, we consider federated Q-learning, which aims to learn an optimal Q-function by periodically aggregating local Q-estimates trained on local data alone. Focusing on infinite-horizon tabular Markov decision processes, we provide sample complexity guarantees for both the synchronous and asynchronous variants of federated Q-learning. In both cases, our bounds exhibit a linear speedup with respect to the number of agents and sharper dependencies on other salient problem parameters. Moreover, existing approaches to federated Q-learning adopt an equally-weighted averaging of local Q-estimates, which can be highly sub-optimal in the asynchronous setting since the local trajectories can be highly heterogeneous due to different local behavior policies. Existing sample complexity scales inverse proportionally to the minimum entry of the stationary state-action occupancy distributions over all agents, requiring that every agent covers the entire state-action space. Instead, we propose a novel importance averaging algorithm, giving larger weights to more frequently visited state-action pairs. The improved sample complexity scales inverse proportionally to the minimum entry of the average stationary state-action occupancy distribution of all agents, thus only requiring the agents collectively cover the entire state-action space, unveiling the blessing of heterogeneity.

We propose a novel training algorithm called DualFL (Dualized Federated Learning), for solving a distributed optimization problem in federated learning. Our approach is based on a specific dual formulation of the federated learning problem. DualFL achieves communication acceleration under various settings on smoothness and strong convexity of the problem. Moreover, it theoretically guarantees the use of inexact local solvers, preserving its optimal communication complexity even with inexact local solutions. DualFL is the first federated learning algorithm that achieves communication acceleration, even when the cost function is either nonsmooth or non-strongly convex. Numerical results demonstrate that the practical performance of DualFL is comparable to those of state-of-the-art federated learning algorithms, and it is robust with respect to hyperparameter tuning.

Proposed as a solution to mitigate the privacy implications related to the adoption of deep learning, Federated Learning (FL) enables large numbers of participants to successfully train deep neural networks without having to reveal the actual private training data. To date, a substantial amount of research has investigated the security and privacy properties of FL, resulting in a plethora of innovative attack and defense strategies. This paper thoroughly investigates the communication capabilities of an FL scheme. In particular, we show that a party involved in the FL learning process can use FL as a covert communication medium to send an arbitrary message. We introduce FedComm, a novel multi-system covert-communication technique that enables robust sharing and transfer of targeted payloads within the FL framework. Our extensive theoretical and empirical evaluations show that FedComm provides a stealthy communication channel, with minimal disruptions to the training process. Our experiments show that FedComm successfully delivers 100% of a payload in the order of kilobits before the FL procedure converges. Our evaluation also shows that FedComm is independent of the application domain and the neural network architecture used by the underlying FL scheme.

Many machine learning applications and tasks rely on the stochastic gradient descent (SGD) algorithm and its variants. Effective step length selection is crucial for the success of these algorithms, which has motivated the development of algorithms such as ADAM or AdaGrad. In this paper, we propose a novel algorithm for adaptive step length selection in the classical SGD framework, which can be readily adapted to other stochastic algorithms. Our proposed algorithm is inspired by traditional nonlinear optimization techniques and is supported by analytical findings. We show that under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements, and generates iterates that converge to a stationary neighborhood of a solution in expectation. We test the proposed algorithm on logistic regressions and deep neural networks and demonstrate that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.

In Federated Learning (FL) client devices connected over the internet collaboratively train a machine learning model without sharing their private data with a central server or with other clients. The seminal Federated Averaging (FedAvg) algorithm trains a single global model by performing rounds of local training on clients followed by model averaging. FedAvg can improve the communication-efficiency of training by performing more steps of Stochastic Gradient Descent (SGD) on clients in each round. However, client data in real-world FL is highly heterogeneous, which has been extensively shown to slow model convergence and harm final performance when $K > 1$ steps of SGD are performed on clients per round. In this work we propose decaying $K$ as training progresses, which can jointly improve the final performance of the FL model whilst reducing the wall-clock time and the total computational cost of training compared to using a fixed $K$. We analyse the convergence of FedAvg with decaying $K$ for strongly-convex objectives, providing novel insights into the convergence properties, and derive three theoretically-motivated decay schedules for $K$. We then perform thorough experiments on four benchmark FL datasets (FEMNIST, CIFAR100, Sentiment140, Shakespeare) to show the real-world benefit of our approaches in terms of real-world convergence time, computational cost, and generalisation performance.

In federated learning (FL), weighted aggregation of local models is conducted to generate a global model, and the aggregation weights are normalized (the sum of weights is 1) and proportional to the local data sizes. In this paper, we revisit the weighted aggregation process and gain new insights into the training dynamics of FL. First, we find that the sum of weights can be smaller than 1, causing global weight shrinking effect (analogous to weight decay) and improving generalization. We explore how the optimal shrinking factor is affected by clients' data heterogeneity and local epochs. Second, we dive into the relative aggregation weights among clients to depict the clients' importance. We develop client coherence to study the learning dynamics and find a critical point that exists. Before entering the critical point, more coherent clients play more essential roles in generalization. Based on the above insights, we propose an effective method for Federated Learning with Learnable Aggregation Weights, named as FedLAW. Extensive experiments verify that our method can improve the generalization of the global model by a large margin on different datasets and models.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司