亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As tropical cyclones become more intense due to climate change, the rise of Al-based modelling provides a more affordable and accessible approach compared to traditional methods based on mathematical models. This work leverages generative diffusion models to forecast cyclone trajectories and precipitation patterns by integrating satellite imaging, remote sensing, and atmospheric data. It employs a cascaded approach that incorporates three main tasks: forecasting, super-resolution, and precipitation modelling. The training dataset includes 51 cyclones from six major tropical cyclone basins from January 2019 - March 2023. Experiments demonstrate that the final forecasts from the cascaded models show accurate predictions up to a 36-hour rollout, with excellent Structural Similarity (SSIM) and Peak-To-Noise Ratio (PSNR) values exceeding 0.5 and 20 dB, respectively, for all three tasks. The 36-hour forecasts can be produced in as little as 30 mins on a single Nvidia A30/RTX 2080 Ti. This work also highlights the promising efficiency of Al methods such as diffusion models for high-performance needs in weather forecasting, such as tropical cyclone forecasting, while remaining computationally affordable, making them ideal for highly vulnerable regions with critical forecasting needs and financial limitations. Code accessible at \url{//github.com/nathzi1505/forecast-diffmodels}.

相關內容

Fused Lasso was proposed to characterize the sparsity of the coefficients and the sparsity of their successive differences for the linear regression. Due to its wide applications, there are many existing algorithms to solve fused Lasso. However, the computation of this model is time-consuming in high-dimensional data sets. To accelerate the calculation of fused Lasso in high-dimension data sets, we build up the safe feature identification rule by introducing an extra dual variable. With a low computational cost, this rule can eliminate inactive features with zero coefficients and identify adjacent features with same coefficients in the solution. To the best of our knowledge, existing screening rules can not be applied to speed up the computation of fused Lasso and our work is the first one to deal with this problem. To emphasize our rule is a unique result that is capable of identifying adjacent features with same coefficients, we name the result as the safe feature identification rule. Numerical experiments on simulation and real data illustrate the efficiency of the rule, which means this rule can reduce the computational time of fused Lasso. In addition, our rule can be embedded into any efficient algorithm and speed up the computational process of fused Lasso.

Spiking Neural Networks (SNNs) and neuromorphic models are more efficient and have more biological realism than the activation functions typically used in deep neural networks, transformer models and generative AI. SNNs have local learning rules, are able to learn on small data sets, and can adapt through neuromodulation. Although research has shown their advantages, there are still few compelling practical applications, especially at the edge where sensors and actuators need to be processed in a timely fashion. One reason for this might be that SNNs are much more challenging to understand, build, and operate due to their intrinsic properties. For instance, the mathematical foundation involves differential equations rather than basic activation functions. To address these challenges, we have developed CARLsim++. It is an integrated toolbox that enables fast and easy creation of neuromorphic applications. It encapsulates the mathematical intrinsics and low-level C++ programming by providing a graphical user interface for users who do not have a background in software engineering but still want to create neuromorphic models. Developers can easily configure inputs and outputs to devices and robots. These can be accurately simulated before deploying on physical devices. CARLsim++ can lead to rapid development of neuromorphic applications for simulation or edge processing.

Human motion prediction and trajectory forecasting are essential in human motion analysis. Nowadays, sensors can be seamlessly integrated into clothing using cutting-edge electronic textile (e-textile) technology, allowing long-term recording of human movements outside the laboratory. Motivated by the recent findings that clothing-attached sensors can achieve higher activity recognition accuracy than body-attached sensors. This work investigates the performance of human motion prediction using clothing-attached sensors compared with body-attached sensors. It reports experiments in which statistical models learnt from the movement of loose clothing are used to predict motion patterns of the body of robotically simulated and real human behaviours. Counterintuitively, the results show that fabric-attached sensors can have better motion prediction performance than rigid-attached sensors. Specifically, The fabric-attached sensor can improve the accuracy up to 40% and requires up to 80% less duration of the past trajectory to achieve high prediction accuracy (i.e., 95%) compared to the rigid-attached sensor.

The empirical risk minimization (ERM) problem with relative entropy regularization (ERM-RER) is investigated under the assumption that the reference measure is a $\sigma$-finite measure, and not necessarily a probability measure. Under this assumption, which leads to a generalization of the ERM-RER problem allowing a larger degree of flexibility for incorporating prior knowledge, numerous relevant properties are stated. Among these properties, the solution to this problem, if it exists, is shown to be a unique probability measure, mutually absolutely continuous with the reference measure. Such a solution exhibits a probably-approximately-correct guarantee for the ERM problem independently of whether the latter possesses a solution. For a fixed dataset and under a specific condition, the empirical risk is shown to be a sub-Gaussian random variable when the models are sampled from the solution to the ERM-RER problem. The generalization capabilities of the solution to the ERM-RER problem (the Gibbs algorithm) are studied via the sensitivity of the expected empirical risk to deviations from such a solution towards alternative probability measures. Finally, an interesting connection between sensitivity, generalization error, and lautum information is established.

Instrumental variables (IVs) are a popular and powerful tool for estimating causal effects in the presence of unobserved confounding. However, classical approaches rely on strong assumptions such as the $\textit{exclusion criterion}$, which states that instrumental effects must be entirely mediated by treatments. This assumption often fails in practice. When IV methods are improperly applied to data that do not meet the exclusion criterion, estimated causal effects may be badly biased. In this work, we propose a novel solution that provides $\textit{partial}$ identification in linear models given a set of $\textit{leaky instruments}$, which are allowed to violate the exclusion criterion to some limited degree. We derive a convex optimization objective that provides provably sharp bounds on the average treatment effect under some common forms of information leakage, and implement inference procedures to quantify the uncertainty of resulting estimates. We demonstrate our method in a set of experiments with simulated data, where it performs favorably against the state of the art.

Generating proofs of unsatisfiability is a valuable capability of most SAT solvers, and is an active area of research for SMT solvers. This paper introduces the first method to efficiently generate proofs of unsatisfiability specifically for an important subset of SMT: SAT Modulo Monotonic Theories (SMMT), which includes many useful finite-domain theories (e.g., bit vectors and many graph-theoretic properties) and is used in production at Amazon Web Services. Our method uses propositional definitions of the theory predicates, from which it generates compact Horn approximations of the definitions, which lead to efficient DRAT proofs, leveraging the large investment the SAT community has made in DRAT. In experiments on practical SMMT problems, our proof generation overhead is minimal (7.41% geometric mean slowdown, 28.8% worst-case), and we can generate and check proofs for many problems that were previously intractable.

To address the urgent challenge of climate change, there is a critical need to transition away from fossil fuels towards sustainable energy systems, with renewable energy sources playing a pivotal role. However, the inherent variability of renewable energy, without effective storage solutions, often leads to imbalances between energy supply and demand. Underground Hydrogen Storage (UHS) emerges as a promising long-term storage solution to bridge this gap, yet its widespread implementation is impeded by the high computational costs associated with high fidelity UHS simulations. This paper introduces UHS from a data-driven perspective and outlines a roadmap for integrating machine learning into UHS, thereby facilitating the large-scale deployment of UHS.

The Lion optimizer has been a promising competitor with the AdamW for training large AI models, with advantages on memory, computation, and sample efficiency. In this paper, we introduce Distributed Lion, an innovative adaptation of Lion for distributed training environments. Leveraging the sign operator in Lion, our Distributed Lion only requires communicating binary or lower-precision vectors between workers to the center server, significantly reducing the communication cost. Our theoretical analysis confirms Distributed Lion's convergence properties. Empirical results demonstrate its robustness across a range of tasks, worker counts, and batch sizes, on both vision and language problems. Notably, Distributed Lion attains comparable performance to standard Lion or AdamW optimizers applied on aggregated gradients, but with significantly reduced communication bandwidth. This feature is particularly advantageous for training large models. In addition, we also demonstrate that Distributed Lion presents a more favorable performance-bandwidth balance compared to existing efficient distributed methods such as deep gradient compression and ternary gradients.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司