亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dialect classification is used in a variety of applications, such as machine translation and speech recognition, to improve the overall performance of the system. In a real-world scenario, a deployed dialect classification model can encounter anomalous inputs that differ from the training data distribution, also called out-of-distribution (OOD) samples. Those OOD samples can lead to unexpected outputs, as dialects of those samples are unseen during model training. Out-of-distribution detection is a new research area that has received little attention in the context of dialect classification. Towards this, we proposed a simple yet effective unsupervised Mahalanobis distance feature-based method to detect out-of-distribution samples. We utilize the latent embeddings from all intermediate layers of a wav2vec 2.0 transformer-based dialect classifier model for multi-task learning. Our proposed approach outperforms other state-of-the-art OOD detection methods significantly.

相關內容

Code generation is to automatically generate source code conforming to a given programming specification, which has received extensive attention especially with the development of large language models (LLMs). Due to the inherent difficulty of code generation, the code generated by LLMs may be also not aligned with the specification. To improve the perfor mance of LLMs in code generation, some Chain of Thought (CoT) techniques have been proposed to guide LLMs for programming understanding before code generation. However, they are still hard to figure out complicated programming logic according to the (concise) specification, leadingto unsatisfactory code generation performance. In this work, we propose the first test-case-driven CoT technique, called TCoT, to further enhance the ability of LLMs in code generation. It understands the programming specification from the novel perspective of test cases, which is aligned with human practice by using examples to understand complicated problems. Due to the existence of the expected output specified in a test case, TCoT can instantly check the correctness of the programming understanding and then refine it to be as correct as possible before code generation. In this way, it is more likely to generate correct code. Our evaluation on 6 datasets and 14 baselines demonstrates the effectiveness of TCoT. For example, TCoT improves ChatGPT by 13.93%~69.44% in terms of Pass@1 (measuring the ratio of programming problems for which the generated code passes all test cases), and outperforms the existing CoT technique with the improvement of 12.14%~53.72% in terms of Pass@1.

Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we embark on a comprehensive exploration of adversarial machine learning models, shedding light on their intrinsic complexity and interpretability. Our investigation reveals intriguing links between machine learning model complexity and Einstein's theory of special relativity, through the concept of entanglement. More specific, we define entanglement computationally and demonstrate that distant feature samples can exhibit strong correlations, akin to entanglement in quantum realm. This revelation challenges conventional perspectives in describing the phenomenon of adversarial transferability observed in contemporary machine learning models. By drawing parallels with the relativistic effects of time dilation and length contraction during computation, we gain deeper insights into adversarial machine learning, paving the way for more robust and interpretable models in this rapidly evolving field.

Recently, several approaches have attempted to combine motion generation and control in one loop to equip robots with reactive behaviors, that cannot be achieved with traditional time-indexed tracking controllers. These approaches however mainly focused on positions, neglecting the orientation part which can be crucial to many tasks e.g. screwing. In this work, we propose a control algorithm that adapts the robot's rotational motion and impedance in a closed-loop manner. Given a first-order Dynamical System representing an orientation motion plan and a desired rotational stiffness profile, our approach enables the robot to follow the reference motion with an interactive behavior specified by the desired stiffness, while always being aware of the current orientation, represented as a Unit Quaternion (UQ). We rely on the Lie algebra to formulate our algorithm, since unlike positions, UQ feature constraints that should be respected in the devised controller. We validate our proposed approach in multiple robot experiments, showcasing the ability of our controller to follow complex orientation profiles, react safely to perturbations, and fulfill physical interaction tasks.

Scientific research is increasingly reliant on computational methods, posing challenges for ensuring research reproducibility. This study focuses on the field of artificial intelligence (AI) and introduces a new framework for evaluating AI platforms for reproducibility from a cyber security standpoint to address the security challenges associated with AI research. Using this framework, five popular AI reproducibility platforms; Floydhub, BEAT, Codalab, Kaggle, and OpenML were assessed. The analysis revealed that none of these platforms fully incorporates the necessary cyber security measures essential for robust reproducibility. Kaggle and Codalab, however, performed better in terms of implementing cyber security measures covering aspects like security, privacy, usability, and trust. Consequently, the study provides tailored recommendations for different user scenarios, including individual researchers, small laboratories, and large corporations. It emphasizes the importance of integrating specific cyber security features into AI platforms to address the challenges associated with AI reproducibility, ultimately advancing reproducibility in this field. Moreover, the proposed framework can be applied beyond AI platforms, serving as a versatile tool for evaluating a wide range of systems and applications from a cyber security perspective.

Electroencephalography(EEG) classification is a crucial task in neuroscience, neural engineering, and several commercial applications. Traditional EEG classification models, however, have often overlooked or inadequately leveraged the brain's topological information. Recognizing this shortfall, there has been a burgeoning interest in recent years in harnessing the potential of Graph Neural Networks (GNN) to exploit the topological information by modeling features selected from each EEG channel in a graph structure. To further facilitate research in this direction, we introduce GNN4EEG, a versatile and user-friendly toolkit for GNN-based modeling of EEG signals. GNN4EEG comprises three components: (i)A large benchmark constructed with four EEG classification tasks based on EEG data collected from 123 participants. (ii)Easy-to-use implementations on various state-of-the-art GNN-based EEG classification models, e.g., DGCNN, RGNN, etc. (iii)Implementations of comprehensive experimental settings and evaluation protocols, e.g., data splitting protocols, and cross-validation protocols. GNN4EEG is publicly released at //github.com/Miracle-2001/GNN4EEG.

System programming languages are typically compiled in a linear pipeline process, which is a completely opaque and isolated to end-users. This limits the possibilities of performing meta-programming in the same language and environment, and the extensibility of the compiler itself by end-users. We propose a novel redefinition of the compilation process in terms of interpreting the program definition as a script. This evaluation is performed in an environment where the full compilation pipeline is implemented and exposed to the user via a meta-object protocol, which forms the basis for a meta-circular definition and implementation of the programming language itself. We demonstrate the feasibility of this approach by bootstrapping a self-compiling implementation of Sysmel, a static and dynamic typed Smalltalk and C++ inspired programming language.

Motion planning is integral to robotics applications such as autonomous driving, surgical robots, and industrial manipulators. Existing planning methods lack scalability to higher-dimensional spaces, while recent learning based planners have shown promise in accelerating sampling-based motion planners (SMP) but lack generalizability to out-of-distribution environments. To address this, we present a novel approach, Vector Quantized-Motion Planning Transformers (VQ-MPT) that overcomes the key generalization and scaling drawbacks of previous learning-based methods. VQ-MPT consists of two stages. Stage 1 is a Vector Quantized-Variational AutoEncoder model that learns to represent the planning space using a finite number of sampling distributions, and stage 2 is an Auto-Regressive model that constructs a sampling region for SMPs by selecting from the learned sampling distribution sets. By splitting large planning spaces into discrete sets and selectively choosing the sampling regions, our planner pairs well with out-of-the-box SMPs, generating near-optimal paths faster than without VQ-MPT's aid. It is generalizable in that it can be applied to systems of varying complexities, from 2D planar to 14D bi-manual robots with diverse environment representations, including costmaps and point clouds. Trained VQ-MPT models generalize to environments unseen during training and achieve higher success rates than previous methods.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司