Optical wireless communication (OWC) offers several complementary advantages to radio-frequency wireless networks such as its massive available spectrum; hence, it is widely anticipated that OWC will assume a pivotal role in the forthcoming sixth generation wireless communication networks. Although significant progress has been achieved in OWC over the past decades, the outage induced by occasionally low received optical power continues to pose a key limiting factor for its deployment. In this work, we discuss the potential role of single-photon counting (SPC) receivers as a promising solution to overcome this limitation. We present an overview of the applications of SPC-based OWC systems in 6G networks, introduce their major performance-limiting factors, propose a performance enhancement framework to tackle these issues, and identify critical areas of open problems for future research.
As the next-generation wireless communication system, Sixth-Generation (6G) technologies are emerging, enabling various mobile edge networks that can revolutionize wireless communication and connectivity. By integrating Generative Artificial Intelligence (GAI) with mobile edge networks, generative mobile edge networks possess immense potential to enhance the intelligence and efficiency of wireless communication networks. In this article, we propose the concept of generative mobile edge networks and overview widely adopted GAI technologies and their applications in mobile edge networks. We then discuss the potential challenges faced by generative mobile edge networks in resource-constrained scenarios. To address these challenges, we develop a universal resource-efficient generative incentive mechanism framework, in which we design resource-efficient methods for network overhead reduction, formulate appropriate incentive mechanisms for the resource allocation problem, and utilize Generative Diffusion Models (GDMs) to find the optimal incentive mechanism solutions. Furthermore, we conduct a case study on resource-constrained mobile edge networks, employing model partition for efficient AI task offloading and proposing a GDM-based Stackelberg model to motivate edge devices to contribute computing resources for mobile edge intelligence. Finally, we propose several open directions that could contribute to the future popularity of generative mobile edge networks.
We consider a cell-free massive multiple-input multiple-output (CF-MaMIMO) communication system in the uplink transmission and propose a novel algorithm for blind or semi-blind joint channel estimation and data detection (JCD). We formulate the problem in the framework of bilinear inference and develop a solution based on the expectation propagation (EP) method for both channel estimation and data detection. We propose a new approximation of the joint a posteriori distribution of the channel and data whose representation as a factor graph enables the application of the EP approach using the message-passing technique, local low-complexity computations at the nodes, and an effective modeling of channel-data interplay. The derived algorithm, called bilinear-EP JCD, allows for a distributed implementation among access points (APs) and the central processing unit (CPU) and has polynomial complexity. Our simulation results show that it outperforms other EP-based state-of-the-art polynomial time algorithms.
Dirichlet Process Mixture Models (DPMMs) are widely used to address clustering problems. Their main advantage lies in their ability to automatically estimate the number of clusters during the inference process through the Bayesian non-parametric framework. However, the inference becomes considerably slow as the dataset size increases. This paper proposes a new distributed Markov Chain Monte Carlo (MCMC) inference method for DPMMs (DisCGS) using sufficient statistics. Our approach uses the collapsed Gibbs sampler and is specifically designed to work on distributed data across independent and heterogeneous machines, which habilitates its use in horizontal federated learning. Our method achieves highly promising results and notable scalability. For instance, with a dataset of 100K data points, the centralized algorithm requires approximately 12 hours to complete 100 iterations while our approach achieves the same number of iterations in just 3 minutes, reducing the execution time by a factor of 200 without compromising clustering performance. The code source is publicly available at //github.com/redakhoufache/DisCGS.
We optimize the Age of Information (AoI) in mobile networks using the age-threshold slotted ALOHA (TSA) protocol. The network comprises multiple source-destination pairs, where each source sends a sequence of status update packets to its destination over a shared spectrum. The TSA protocol stipulates that a source node must remain silent until its AoI reaches a predefined threshold, after which the node accesses the radio channel with a certain probability. Using stochastic geometry tools, we derive analytical expressions for the transmission success probability, mean peak AoI, and time-average AoI. Subsequently, we obtain closed-form expressions for the optimal update rate and age threshold that minimize the mean peak and time-average AoI, respectively. In addition, we establish a scaling law for the mean peak AoI and time-average AoI in mobile networks, revealing that the optimal mean peak AoI and time-average AoI increase linearly with the deployment density. Notably, the growth rate of time-average AoI under TSA is half of that under conventional slotted ALOHA. When considering the optimal mean peak AoI, the TSA protocol exhibits comparable performance to the traditional slotted ALOHA protocol. These findings conclusively affirm the advantage of TSA in reducing higher-order AoI, particularly in densely deployed networks.
Dynamic radio resource management (RRM) in wireless networks presents significant challenges, particularly in the context of Radio Access Network (RAN) slicing. This technology, crucial for catering to varying user requirements, often grapples with complex optimization scenarios. Existing Reinforcement Learning (RL) approaches, while achieving good performance in RAN slicing, typically rely on online algorithms or behavior cloning. These methods necessitate either continuous environmental interactions or access to high-quality datasets, hindering their practical deployment. Towards addressing these limitations, this paper introduces offline RL to solving the RAN slicing problem, marking a significant shift towards more feasible and adaptive RRM methods. We demonstrate how offline RL can effectively learn near-optimal policies from sub-optimal datasets, a notable advancement over existing practices. Our research highlights the inherent flexibility of offline RL, showcasing its ability to adjust policy criteria without the need for additional environmental interactions. Furthermore, we present empirical evidence of the efficacy of offline RL in adapting to various service-level requirements, illustrating its potential in diverse RAN slicing scenarios.
Unmanned aerial vehicles (UAVs) can be utilized as aerial base stations (ABSs) to provide wireless connectivity for ground users (GUs) in various emergency scenarios. However, it is a NP-hard problem with exponential complexity in $M$ and $N$, in order to maximize the coverage rate of $M$ GUs by jointly placing $N$ ABSs with limited coverage range. The problem is further complicated when the coverage range becomes irregular due to site-specific blockages (e.g., buildings) on the air-ground channel, and/or when the GUs are moving. To address the above challenges, we study a multi-ABS movement optimization problem to maximize the average coverage rate of mobile GUs in a site-specific environment. The Spatial Deep Learning with Multi-dimensional Archive of Phenotypic Elites (SDL-ME) algorithm is proposed to tackle this challenging problem by 1) partitioning the complicated ABS movement problem into ABS placement sub-problems each spanning finite time horizon; 2) using an encoder-decoder deep neural network (DNN) as the emulator to capture the spatial correlation of ABSs/GUs and thereby reducing the cost of interaction with the actual environment; 3) employing the emulator to speed up a quality-diversity search for the optimal placement solution; and 4) proposing a planning-exploration-serving scheme for multi-ABS movement coordination. Numerical results demonstrate that the proposed approach significantly outperforms the benchmark Deep Reinforcement Learning (DRL)-based method and other two baselines in terms of average coverage rate, training time and/or sample efficiency. Moreover, with one-time training, our proposed method can be applied in scenarios where the number of ABSs/GUs dynamically changes on site and/or with different/varying GU speeds, which is thus more robust and flexible compared with conventional DRL-based methods.
Holographic MIMO (HMIMO) is being increasingly recognized as a key enabling technology for 6G wireless systems through the deployment of an extremely large number of antennas within a compact space to fully exploit the potentials of the electromagnetic (EM) channel. Nevertheless, the benefits of HMIMO systems cannot be fully unleashed without an efficient means to estimate the high-dimensional channel, whose distribution becomes increasingly complicated due to the accessibility of the near-field region. In this paper, we address the fundamental challenge of designing a low-complexity Bayes-optimal channel estimator in near-field HMIMO systems operating in unknown EM environments. The core idea is to estimate the HMIMO channels solely based on the Stein's score function of the received pilot signals and an estimated noise level, without relying on priors or supervision that is not feasible in practical deployment. A neural network is trained with the unsupervised denoising score matching objective to learn the parameterized score function. Meanwhile, a principal component analysis (PCA)-based algorithm is proposed to estimate the noise level leveraging the low-rank near-field spatial correlation. Building upon these techniques, we develop a Bayes-optimal score-based channel estimator for fully-digital HMIMO transceivers in a closed form. The optimal score-based estimator is also extended to hybrid analog-digital HMIMO systems by incorporating it into a low-complexity message passing algorithm. The (quasi-) Bayes-optimality of the proposed estimators is validated both in theory and by extensive simulation results. In addition to optimality, it is shown that our proposal is robust to various mismatches and can quickly adapt to dynamic EM environments in an online manner thanks to its unsupervised nature, demonstrating its potential in real-world deployment.
The growing demand for radio access networks (RANs) driven by advanced wireless technology and the everincreasing mobile traffic, faces significant energy consumption challenges that threaten sustainability. To address this, an architecture referring to the vertical heterogeneous network (vHetNet) has recently been proposed. Our study seeks to enhance network operations in terms of energy efficiency and sustainability by examining a vHetNet configuration, comprising a high altitude platform station (HAPS) acting as a super macro base station (SMBS), along with a macro base station (MBS) and a set of small base stations (SBSs) in a densely populated area.
Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets), which play a crucial role in creating new opportunities, are experiencing significant growth in civil applications worldwide. UASNets improve disaster management through timely surveillance and advance precision agriculture with detailed crop monitoring, thereby significantly transforming the commercial economy. UASNets revolutionize the commercial sector by offering greater efficiency, safety, and cost-effectiveness, highlighting their transformative impact. A fundamental aspect of these new capabilities and changes is the collection of data from rugged and remote areas. Due to their excellent mobility and maneuverability, UAVs are employed to collect data from ground sensors in harsh environments, such as natural disaster monitoring, border surveillance, and emergency response monitoring. One major challenge in these scenarios is that the movements of UAVs affect channel conditions and result in packet loss. Fast movements of UAVs lead to poor channel conditions and rapid signal degradation, resulting in packet loss. On the other hand, slow mobility of a UAV can cause buffer overflows of the ground sensors, as newly arrived data is not promptly collected by the UAV. Our proposal to address this challenge is to minimize packet loss by jointly optimizing the velocity controls and data collection schedules of multiple UAVs.Furthermore, in UASNets, swift movements of UAVs result in poor channel conditions and fast signal attenuation, leading to an extended age of information (AoI). In contrast, slow movements of UAVs prolong flight time, thereby extending the AoI of ground sensors.To address this challenge, we propose a new mean-field flight resource allocation optimization to minimize the AoI of sensory data.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.