Accurate and automated segmentation of intervertebral discs (IVDs) in medical images is crucial for assessing spine-related disorders, such as osteoporosis, vertebral fractures, or IVD herniation. We present HCA-Net, a novel contextual attention network architecture for semantic labeling of IVDs, with a special focus on exploiting prior geometric information. Our approach excels at processing features across different scales and effectively consolidating them to capture the intricate spatial relationships within the spinal cord. To achieve this, HCA-Net models IVD labeling as a pose estimation problem, aiming to minimize the discrepancy between each predicted IVD location and its corresponding actual joint location. In addition, we introduce a skeletal loss term to reinforce the model's geometric dependence on the spine. This loss function is designed to constrain the model's predictions to a range that matches the general structure of the human vertebral skeleton. As a result, the network learns to reduce the occurrence of false predictions and adaptively improves the accuracy of IVD location estimation. Through extensive experimental evaluation on multi-center spine datasets, our approach consistently outperforms previous state-of-the-art methods on both MRI T1w and T2w modalities. The codebase is accessible to the public on \href{//github.com/xmindflow/HCA-Net}{GitHub}.
Estimating the individual treatment effect (ITE) from observational data is a crucial research topic that holds significant value across multiple domains. How to identify hidden confounders poses a key challenge in ITE estimation. Recent studies have incorporated the structural information of social networks to tackle this challenge, achieving notable advancements. However, these methods utilize graph neural networks to learn the representation of hidden confounders in Euclidean space, disregarding two critical issues: (1) the social networks often exhibit a scalefree structure, while Euclidean embeddings suffer from high distortion when used to embed such graphs, and (2) each ego-centric network within a social network manifests a treatment-related characteristic, implying significant patterns of hidden confounders. To address these issues, we propose a novel method called Treatment-Aware Hyperbolic Representation Learning (TAHyper). Firstly, TAHyper employs the hyperbolic space to encode the social networks, thereby effectively reducing the distortion of confounder representation caused by Euclidean embeddings. Secondly, we design a treatment-aware relationship identification module that enhances the representation of hidden confounders by identifying whether an individual and her neighbors receive the same treatment. Extensive experiments on two benchmark datasets are conducted to demonstrate the superiority of our method.
In Class-Incremental Learning (CIL) an image classification system is exposed to new classes in each learning session and must be updated incrementally. Methods approaching this problem have updated both the classification head and the feature extractor body at each session of CIL. In this work, we develop a baseline method, First Session Adaptation (FSA), that sheds light on the efficacy of existing CIL approaches and allows us to assess the relative performance contributions from head and body adaption. FSA adapts a pre-trained neural network body only on the first learning session and fixes it thereafter; a head based on linear discriminant analysis (LDA), is then placed on top of the adapted body, allowing exact updates through CIL. FSA is replay-free i.e.~it does not memorize examples from previous sessions of continual learning. To empirically motivate FSA, we first consider a diverse selection of 22 image-classification datasets, evaluating different heads and body adaptation techniques in high/low-shot offline settings. We find that the LDA head performs well and supports CIL out-of-the-box. We also find that Featurewise Layer Modulation (FiLM) adapters are highly effective in the few-shot setting, and full-body adaption in the high-shot setting. Second, we empirically investigate various CIL settings including high-shot CIL and few-shot CIL, including settings that have previously been used in the literature. We show that FSA significantly improves over the state-of-the-art in 15 of the 16 settings considered. FSA with FiLM adapters is especially performant in the few-shot setting. These results indicate that current approaches to continuous body adaptation are not working as expected. Finally, we propose a measure that can be applied to a set of unlabelled inputs which is predictive of the benefits of body adaptation.
Previous studies have developed fairness methods for biased models that exhibit discriminatory behaviors towards specific subgroups. While these models have shown promise in achieving fair predictions, recent research has identified their potential vulnerability to score-based membership inference attacks (MIAs). In these attacks, adversaries can infer whether a particular data sample was used during training by analyzing the model's prediction scores. However, our investigations reveal that these score-based MIAs are ineffective when targeting fairness-enhanced models in binary classifications. The attack models trained to launch the MIAs degrade into simplistic threshold models, resulting in lower attack performance. Meanwhile, we observe that fairness methods often lead to prediction performance degradation for the majority subgroups of the training data. This raises the barrier to successful attacks and widens the prediction gaps between member and non-member data. Building upon these insights, we propose an efficient MIA method against fairness-enhanced models based on fairness discrepancy results (FD-MIA). It leverages the difference in the predictions from both the original and fairness-enhanced models and exploits the observed prediction gaps as attack clues. We also explore potential strategies for mitigating privacy leakages. Extensive experiments validate our findings and demonstrate the efficacy of the proposed method.
Automated diagnosis of AD in brain images is becoming a clinically important technique to support precision and efficient diagnosis and treatment planning. A few efforts have been made to automatically diagnose AD in magnetic resonance imaging (MRI) using three-dimensional CNNs. However, due to the complexity of 3D models, the performance is still unsatisfactory, both in terms of accuracy and efficiency. To overcome the complexities of 3D images and 3D models, in this study, we aim to attack this problem with 2D vision Transformers. We propose a 2D transformer-based medical image model with various transformer attention encoders to diagnose AD in 3D MRI images, by cutting the 3D images into multiple 2D slices.The model consists of four main components: shared encoders across three dimensions, dimension-specific encoders, attention across images from the same dimension, and attention across three dimensions. It is used to obtain attention relationships among multiple sequences from different dimensions (axial, coronal, and sagittal) and multiple slices. We also propose morphology augmentation, an erosion and dilation based method to increase the structural difference between AD and normal images. In this experiment, we use multiple datasets from ADNI, AIBL, MIRAID, OASIS to show the performance of our model. Our proposed MedTransformer demonstrates a strong ability in diagnosing AD. These results demonstrate the effectiveness of MedTransformer in learning from 3D data using a much smaller model and its capability to generalize among different medical tasks, which provides a possibility to help doctors diagnose AD in a simpler way.
Auditory spatial attention detection (ASAD) is used to determine the direction of a listener's attention to a speaker by analyzing her/his electroencephalographic (EEG) signals. This study aimed to further improve the performance of ASAD with a short decision window (i.e., <1 s) rather than with long decision windows in previous studies. An end-to-end temporal attention network (i.e., TAnet) was introduced in this work. TAnet employs a multi-head attention (MHA) mechanism, which can more effectively capture the interactions among time steps in collected EEG signals and efficiently assign corresponding weights to those EEG time steps. Experiments demonstrated that, compared with the CNN-based method and recent ASAD methods, TAnet provided improved decoding performance in the KUL dataset, with decoding accuracies of 92.4% (decision window 0.1 s), 94.9% (0.25 s), 95.1% (0.3 s), 95.4% (0.4 s), and 95.5% (0.5 s) with short decision windows (i.e., <1 s). As a new ASAD model with a short decision window, TAnet can potentially facilitate the design of EEG-controlled intelligent hearing aids and sound recognition systems.
Accurate lesion classification in Wireless Capsule Endoscopy (WCE) images is vital for early diagnosis and treatment of gastrointestinal (GI) cancers. However, this task is confronted with challenges like tiny lesions and background interference. Additionally, WCE images exhibit higher intra-class variance and inter-class similarities, adding complexity. To tackle these challenges, we propose Decoupled Supervised Contrastive Learning for WCE image classification, learning robust representations from zoomed-in WCE images generated by Saliency Augmentor. Specifically, We use uniformly down-sampled WCE images as anchors and WCE images from the same class, especially their zoomed-in images, as positives. This approach empowers the Feature Extractor to capture rich representations from various views of the same image, facilitated by Decoupled Supervised Contrastive Learning. Training a linear Classifier on these representations within 10 epochs yields an impressive 92.01% overall accuracy, surpassing the prior state-of-the-art (SOTA) by 0.72% on a blend of two publicly accessible WCE datasets. Code is available at: //github.com/Qiukunpeng/DSCL.
Heuristics and cognitive biases are an integral part of human decision-making. Automatically detecting a particular cognitive bias could enable intelligent tools to provide better decision-support. Detecting the presence of a cognitive bias currently requires a hand-crafted experiment and human interpretation. Our research aims to explore conversational agents as an effective tool to measure various cognitive biases in different domains. Our proposed conversational agent incorporates a bias measurement mechanism that is informed by the existing experimental designs and various experimental tasks identified in the literature. Our initial experiments to measure framing and loss-aversion biases indicate that the conversational agents can be effectively used to measure the biases.
Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.