Robots operating in an open world will encounter novel objects with unknown physical properties, such as mass, friction, or size. These robots will need to sense these properties through interaction prior to performing downstream tasks with the objects. We propose a method that autonomously learns tactile exploration policies by developing a generative world model that is leveraged to 1) estimate the object's physical parameters using a differentiable Bayesian filtering algorithm and 2) develop an exploration policy using an information-gathering model predictive controller. We evaluate our method on three simulated tasks where the goal is to estimate a desired object property (mass, height or toppling height) through physical interaction. We find that our method is able to discover policies that efficiently gather information about the desired property in an intuitive manner. Finally, we validate our method on a real robot system for the height estimation task, where our method is able to successfully learn and execute an information-gathering policy from scratch.
In Koopman operator theory, a finite-dimensional nonlinear system is transformed into an infinite but linear system using a set of observable functions. However, manually selecting observable functions that span the invariant subspace of the Koopman operator based on prior knowledge is inefficient and challenging, particularly when little or no information is available about the underlying systems. Furthermore, current methodologies tend to disregard the importance of the invertibility of observable functions, which leads to inaccurate results. To address these challenges, we propose the so-called FlowDMD, aka Flow-based Dynamic Mode Decomposition, that utilizes the Coupling Flow Invertible Neural Network (CF-INN) framework. FlowDMD leverages the intrinsically invertible characteristics of the CF-INN to learn the invariant subspaces of the Koopman operator and accurately reconstruct state variables. Numerical experiments demonstrate the superior performance of our algorithm compared to state-of-the-art methodologies.
Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.
We establish finite-sample guarantees for efficient proper learning of bounded-degree polytrees, a rich class of high-dimensional probability distributions and a subclass of Bayesian networks, a widely-studied type of graphical model. Recently, Bhattacharyya et al. (2021) obtained finite-sample guarantees for recovering tree-structured Bayesian networks, i.e., 1-polytrees. We extend their results by providing an efficient algorithm which learns $d$-polytrees in polynomial time and sample complexity for any bounded $d$ when the underlying undirected graph (skeleton) is known. We complement our algorithm with an information-theoretic sample complexity lower bound, showing that the dependence on the dimension and target accuracy parameters are nearly tight.
The aim of this article is to give lower bounds on the parameters of algebraic geometric error-correcting codes constructed from projective bundles over Deligne--Lusztig surfaces. The methods based on an intensive use of the intersection theory allow us to extend the codes previously constructed from higher-dimensional varieties, as well as those coming from curves. General bounds are obtained for the case of projective bundles of rank $2$ over standard Deligne-Lusztig surfaces, and some explicit examples coming from surfaces of type $A_{2}$ and ${}^{2}A_{4}$ are given.
This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental dasasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the Python codes are included in the first release of ModelFLOWs-app.
We study propositional proof systems with inference rules that formalize restricted versions of the ability to make assumptions that hold without loss of generality, commonly used informally to shorten proofs. Each system we study is built on resolution. They are called BC${}^-$, RAT${}^-$, SBC${}^-$, and GER${}^-$, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution - all "without new variables." They may be viewed as weak versions of extended resolution (ER) since they are defined by first generalizing the extension rule and then taking away the ability to introduce new variables. Except for SBC${}^-$, they are known to be strictly between resolution and extended resolution. Several separations between these systems were proved earlier by exploiting the fact that they effectively simulate ER. We answer the questions left open: We prove exponential lower bounds for SBC${}^-$ proofs of a binary encoding of the pigeonhole principle, which separates ER from SBC${}^-$. Using this new separation, we prove that both RAT${}^-$ and GER${}^-$ are exponentially separated from SBC${}^-$. This completes the picture of their relative strengths.
Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.
We provide a novel approach to achieving a desired outcome in a coordination game: the original 2x2 game is embedded in a 2x3 game where one of the players may use a third action. For a large set of payoff values only one of the Nash equilibria of the original 2x2 game is stable under replicator dynamics. We show that this Nash equilibrium is the {\omega}-limit of all initial conditions in the interior of the state space for the modified 2x3 game. Thus, the existence of a third action for one of the players, although not used, allows both players to coordinate on one Nash equilibrium. This Nash equilibrium is the one preferred by, at least, the player with access to the new action. This approach deals with both coordination failure (players choose the payoff-dominant Nash equilibrium, if such a Nash equilibrium exists) and miscoordination (players do not use mixed strategies).
Dominating sets in graphs are often used to model some monitoring of the graph: guards are posted on the vertices of the dominating set, and they can thus react to attacks occurring on the unguarded vertices by moving there (yielding a new set of guards, which may not be dominating anymore). A dominating set is eternal if it can endlessly resist to attacks. From the attacker's perspective, if we are given a non-eternal dominating set, the question is to determine how fast can we provoke an attack that cannot be handled by a neighboring guard. We investigate this question from a computational complexity point of view, by showing that this question is PSPACE-hard, even for graph classes where finding a minimum eternal dominating set is in P. We then complement this result by giving polynomial time algorithms for cographs and trees, and showing a connection with tree-depth for the latter. We also investigate the problem from a parameterized complexity perspective, mainly considering two parameters: the number of guards and the number of steps.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.