Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.
The domain of Natural Language Processing (NLP) has experienced notable progress in the evolution of Bangla Question Answering (QA) systems. This paper presents a comprehensive review of seven research articles that contribute to the progress in this domain. These research studies explore different aspects of creating question-answering systems for the Bangla language. They cover areas like collecting data, preparing it for analysis, designing models, conducting experiments, and interpreting results. The papers introduce innovative methods like using LSTM-based models with attention mechanisms, context-based QA systems, and deep learning techniques based on prior knowledge. However, despite the progress made, several challenges remain, including the lack of well-annotated data, the absence of high-quality reading comprehension datasets, and difficulties in understanding the meaning of words in context. Bangla QA models' precision and applicability are constrained by these challenges. This review emphasizes the significance of these research contributions by highlighting the developments achieved in creating Bangla QA systems as well as the ongoing effort required to get past roadblocks and improve the performance of these systems for actual language comprehension tasks.
As world knowledge advances and new task schemas emerge, Continual Learning (CL) becomes essential for keeping Large Language Models (LLMs) current and addressing their shortcomings. This process typically involves continual instruction tuning (CIT) and continual pre-training (CPT) to enable these models to adapt to novel tasks and acquire critical knowledge. However, collecting sufficient CPT data and efficiently bridging knowledge gaps remain significant challenges. Inspired by the 'summarizing mistakes' strategy, we propose the Continue Evolving from Mistakes (CEM) method, a data-efficient approach aiming to collect CPT data and continually improve LLMs' performance through iterative evaluation and supplementation with mistake-relevant knowledge. To further optimize data usage and mitigate forgetting, we introduce a novel training paradigm that combines CIT and CPT. Experiments show that CEM substantially enhances multiple models' performance on both in-domain and out-of-domain QA tasks, achieving gains of up to 29.63%. Code and datasets are available on //anonymous.4open.science/r/cem-BB25.
Analysts in Security Operations Centers (SOCs) are often occupied with time-consuming investigations of alerts from Network Intrusion Detection Systems (NIDS). Many NIDS rules lack clear explanations and associations with attack techniques, complicating the alert triage and the generation of attack hypotheses. Large Language Models (LLMs) may be a promising technology to reduce the alert explainability gap by associating rules with attack techniques. In this paper, we investigate the ability of three prominent LLMs (ChatGPT, Claude, and Gemini) to reason about NIDS rules while labeling them with MITRE ATT&CK tactics and techniques. We discuss prompt design and present experiments performed with 973 Snort rules. Our results indicate that while LLMs provide explainable, scalable, and efficient initial mappings, traditional Machine Learning (ML) models consistently outperform them in accuracy, achieving higher precision, recall, and F1-scores. These results highlight the potential for hybrid LLM-ML approaches to enhance SOC operations and better address the evolving threat landscape.
One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.
Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
Domain Large Language Models (LLMs) are developed for domain-specific tasks based on general LLMs. But it still requires professional knowledge to facilitate the expertise for some domain-specific tasks. In this paper, we investigate into knowledge-intensive calculation problems. We find that the math problems to be challenging for LLMs, when involving complex domain-specific rules and knowledge documents, rather than simple formulations of terminologies. Therefore, we propose a pipeline to solve the domain-specific calculation problems with Knowledge-Intensive Programs Generator more effectively, named as KIPG. It generates knowledge-intensive programs according to the domain-specific documents. For each query, key variables are extracted, then outcomes which are dependent on domain knowledge are calculated with the programs. By iterative preference alignment, the code generator learns to improve the logic consistency with the domain knowledge. Taking legal domain as an example, we have conducted experiments to prove the effectiveness of our pipeline, and extensive analysis on the modules. We also find that the code generator is also adaptable to other domains, without training on the new knowledge.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.