亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inspired by human driving focus, this research pioneers networks augmented with Focusing Sampling, Partial Field of View Evaluation, Enhanced FPN architecture and Directional IoU Loss - targeted innovations addressing obstacles to precise lane detection for autonomous driving. Experiments demonstrate our Focusing Sampling strategy, emphasizing vital distant details unlike uniform approaches, significantly boosts both benchmark and practical curved/distant lane recognition accuracy essential for safety. While FENetV1 achieves state-of-the-art conventional metric performance via enhancements isolating perspective-aware contexts mimicking driver vision, FENetV2 proves most reliable on the proposed Partial Field analysis. Hence we specifically recommend V2 for practical lane navigation despite fractional degradation on standard entire-image measures. Future directions include collecting on-road data and integrating complementary dual frameworks to further breakthroughs guided by human perception principles. Code will be made available.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議(yi)。 Publisher:IFIP。 SIT:

The volume of image repositories continues to grow. Despite the availability of content-based addressing, we still lack a lightweight tool that allows us to discover images of distinct characteristics from a large collection. In this paper, we propose a fast and training-free algorithm for novel image discovery. The key of our algorithm is formulating a collection of images as a perceptual distance-weighted graph, within which our task is to locate the K-densest subgraph that corresponds to a subset of the most unique images. While solving this problem is not just NP-hard but also requires a full computation of the potentially huge distance matrix, we propose to relax it into a K-sparse eigenvector problem that we can efficiently solve using stochastic gradient descent (SGD) without explicitly computing the distance matrix. We compare our algorithm against state-of-the-arts on both synthetic and real datasets, showing that it is considerably faster to run with a smaller memory footprint while able to mine novel images more accurately.

This study tackles the issue of neural network pruning that inaccurate gradients exist when computing the empirical Fisher Information Matrix (FIM). We introduce SWAP, an Entropic Wasserstein regression (EWR) network pruning formulation, capitalizing on the geometric attributes of the optimal transport (OT) problem. The "swap" of a commonly used standard linear regression (LR) with the EWR in optimization is analytically showcased to excel in noise mitigation by adopting neighborhood interpolation across data points, yet incurs marginal extra computational cost. The unique strength of SWAP is its intrinsic ability to strike a balance between noise reduction and covariance information preservation. Extensive experiments performed on various networks show comparable performance of SWAP with state-of-the-art (SoTA) network pruning algorithms. Our proposed method outperforms the SoTA when the network size or the target sparsity is large, the gain is even larger with the existence of noisy gradients, possibly from noisy data, analog memory, or adversarial attacks. Notably, our proposed method achieves a gain of 6% improvement in accuracy and 8% improvement in testing loss for MobileNetV1 with less than one-fourth of the network parameters remaining.

In the realm of Graph Neural Networks (GNNs), two exciting research directions have recently emerged: Subgraph GNNs and Graph Transformers. In this paper, we propose an architecture that integrates both approaches, dubbed Subgraphormer, which combines the enhanced expressive power, message-passing mechanisms, and aggregation schemes from Subgraph GNNs with attention and positional encodings, arguably the most important components in Graph Transformers. Our method is based on an intriguing new connection we reveal between Subgraph GNNs and product graphs, suggesting that Subgraph GNNs can be formulated as Message Passing Neural Networks (MPNNs) operating on a product of the graph with itself. We use this formulation to design our architecture: first, we devise an attention mechanism based on the connectivity of the product graph. Following this, we propose a novel and efficient positional encoding scheme for Subgraph GNNs, which we derive as a positional encoding for the product graph. Our experimental results demonstrate significant performance improvements over both Subgraph GNNs and Graph Transformers on a wide range of datasets.

Recommender Systems (RS) have significantly advanced online content discovery and personalized decision-making. However, emerging vulnerabilities in RS have catalyzed a paradigm shift towards Trustworthy RS (TRS). Despite numerous progress on TRS, most of them focus on data correlations while overlooking the fundamental causal nature in recommendation. This drawback hinders TRS from identifying the cause in addressing trustworthiness issues, leading to limited fairness, robustness, and explainability. To bridge this gap, causal learning emerges as a class of promising methods to augment TRS. These methods, grounded in reliable causality, excel in mitigating various biases and noises while offering insightful explanations for TRS. However, there lacks a timely survey in this vibrant area. This paper creates an overview of TRS from the perspective of causal learning. We begin by presenting the advantages and common procedures of Causality-oriented TRS (CTRS). Then, we identify potential trustworthiness challenges at each stage and link them to viable causal solutions, followed by a classification of CTRS methods. Finally, we discuss several future directions for advancing this field.

Despite advancements in evaluating Large Language Models (LLMs) for code synthesis, benchmarks have predominantly focused on functional correctness, overlooking the importance of code efficiency. We present Mercury, the first benchmark designated for assessing the code efficiency of LLM code synthesis tasks. Mercury consists of 1,889 programming tasks covering diverse difficulty levels alongside test case generators generating unlimited cases for comprehensive evaluation. Unlike existing benchmarks, Mercury integrates a novel metric Beyond@K to measure normalized code efficiency based on historical submissions, leading to a new evaluation indicator for code synthesis, which encourages generating functionally correct and computationally efficient code, mirroring the real-world software development standard. Our findings reveal that while LLMs demonstrate the remarkable capability to generate functionally correct code, there still exists a substantial gap in their efficiency output, underscoring a new frontier for LLM research and development.

This paper presents the design of a research platform for autonomous driving applications, the Delft's Autonomous-driving Robotic Testbed (DART). Our goal was to design a small-scale car-like robot equipped with all the hardware needed for on-board navigation and control while keeping it cost-effective and easy to replicate. To develop DART, we built on an existing off-the-shelf model and augmented its sensor suite to improve its capabilities for control and motion planning tasks. We detail the hardware setup and the system identification challenges to derive the vehicle's models. Furthermore, we present some use cases where we used DART to test different motion planning applications to show the versatility of the platform. Finally, we provide a git repository with all the details to replicate DART, complete with a simulation environment and the data used for system identification.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

北京阿比特科技有限公司