Automatic analysis of teacher and student interactions could be very important to improve the quality of teaching and student engagement. However, despite some recent progress in utilizing multimodal data for teaching and learning analytics, a thorough analysis of a rich multimodal dataset coming for a complex real learning environment has yet to be done. To bridge this gap, we present a large-scale MUlti-modal Teaching and Learning Analytics (MUTLA) dataset. This dataset includes time-synchronized multimodal data records of students (learning logs, videos, EEG brainwaves) as they work in various subjects from Squirrel AI Learning System (SAIL) to solve problems of varying difficulty levels. The dataset resources include user records from the learner records store of SAIL, brainwave data collected by EEG headset devices, and video data captured by web cameras while students worked in the SAIL products. Our hope is that by analyzing real-world student learning activities, facial expressions, and brainwave patterns, researchers can better predict engagement, which can then be used to improve adaptive learning selection and student learning outcomes. An additional goal is to provide a dataset gathered from real-world educational activities versus those from controlled lab environments to benefit the educational learning community.
Despite the recent advances showing that a model pre-trained on large-scale source code data is able to gain appreciable generalization capability, it still requires a sizeable amount of data on the target task for fine-tuning. And the effectiveness of the model generalization is largely affected by the size and quality of the fine-tuning data, which is detrimental for target tasks with limited or unavailable resources. Therefore, cross-task generalization, with the goal of improving the generalization of the model to unseen tasks that have not been seen before, is of strong research and application value. In this paper, we propose a large-scale benchmark that includes 216 existing code-related tasks. Then, we annotate each task with the corresponding meta information such as task description and instruction, which contains detailed information about the task and a solution guide. This also helps us to easily create a wide variety of ``training/evaluation'' task splits to evaluate the various cross-task generalization capabilities of the model. Then we perform some preliminary experiments to demonstrate that the cross-task generalization of models can be largely improved by in-context learning methods such as few-shot learning and learning from task instructions, which shows the promising prospects of conducting cross-task learning research on our benchmark. We hope that the collection of the datasets and our benchmark will facilitate future work that is not limited to cross-task generalization.
Federated Learning offers a way to train deep neural networks in a distributed fashion. While this addresses limitations related to distributed data, it incurs a communication overhead as the model parameters or gradients need to be exchanged regularly during training. This can be an issue with large scale distribution of learning asks and negate the benefit of the respective resource distribution. In this paper, we we propose to utilise parallel Adapters for Federated Learning. Using various datasets, we show that Adapters can be applied with different Federated Learning techniques. We highlight that our approach can achieve similar inference performance compared to training the full model while reducing the communication overhead drastically. We further explore the applicability of Adapters in cross-silo and cross-device settings, as well as different non-IID data distributions.
Datasets in the real world are often complex and to some degree hierarchical, with groups and sub-groups of data sharing common characteristics at different levels of abstraction. Understanding and uncovering the hidden structure of these datasets is an important task that has many practical applications. To address this challenge, we present a new and general method for building relational data trees by exploiting the learning dynamics of the Restricted Boltzmann Machine (RBM). Our method is based on the mean-field approach, derived from the Plefka expansion, and developed in the context of disordered systems. It is designed to be easily interpretable. We tested our method in an artificially created hierarchical dataset and on three different real-world datasets (images of digits, mutations in the human genome, and a homologous family of proteins). The method is able to automatically identify the hierarchical structure of the data. This could be useful in the study of homologous protein sequences, where the relationships between proteins are critical for understanding their function and evolution.
We present a generative document-specific approach to character analysis and recognition in text lines. Our main idea is to build on unsupervised multi-object segmentation methods and in particular those that reconstruct images based on a limited amount of visual elements, called sprites. Our approach can learn a large number of different characters and leverage line-level annotations when available. Our contribution is twofold. First, we provide the first adaptation and evaluation of a deep unsupervised multi-object segmentation approach for text line analysis. Since these methods have mainly been evaluated on synthetic data in a completely unsupervised setting, demonstrating that they can be adapted and quantitatively evaluated on real text images and that they can be trained using weak supervision are significant progresses. Second, we demonstrate the potential of our method for new applications, more specifically in the field of paleography, which studies the history and variations of handwriting, and for cipher analysis. We evaluate our approach on three very different datasets: a printed volume of the Google1000 dataset, the Copiale cipher and historical handwritten charters from the 12th and early 13th century.
Deep learning has been successful in BCI decoding. However, it is very data-hungry and requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer. Recently, transfer learning for EEG decoding has been suggested as a remedy and become subject to recent BCI competitions (e.g. BEETL), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often based on different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN, which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets obtained from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.
Automata-based representations play an important role in control and planning in sequential decision-making, but obtaining high-level task knowledge for building automata is often difficult. Although large-scale generative language models (GLMs) can help automatically distill task knowledge, the textual outputs from GLMs are not amenable for formal verification or use in sequential decision-making. We propose a novel algorithm named GLM2FSA, which obtains high-level task knowledge represented in a finite state automaton (FSA) from a given brief description of the task goal. GLM2FSA sends queries to a GLM for task knowledge in textual form and then builds an FSA to represent the textual knowledge. It fills the gap between text and automata-based representations, and the constructed FSA can be directly utilized in formal verification. We provide an algorithm for iteratively refining the queries to the GLM based on the outcomes, e.g., counter-examples, from verification. We demonstrate the algorithm on examples that range from everyday tasks, e.g., crossing a road and making coffee, to security applications to laboratory safety protocols.
In recent years, pretrained neural language models (PNLMs) have taken the field of natural language processing by storm, achieving new benchmarks and state-of-the-art performances. These models often rely heavily on annotated data, which may not always be available. Data scarcity are commonly found in specialized domains, such as medical, or in low-resource languages that are underexplored by AI research. In this dissertation, we focus on mitigating data scarcity using data augmentation and neural ensemble learning techniques for neural language models. In both research directions, we implement neural network algorithms and evaluate their impact on assisting neural language models in downstream NLP tasks. Specifically, for data augmentation, we explore two techniques: 1) creating positive training data by moving an answer span around its original context and 2) using text simplification techniques to introduce a variety of writing styles to the original training data. Our results indicate that these simple and effective solutions improve the performance of neural language models considerably in low-resource NLP domains and tasks. For neural ensemble learning, we use a multilabel neural classifier to select the best prediction outcome from a variety of individual pretrained neural language models trained for a low-resource medical text simplification task.
Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.