Measure-preserving neural networks are well-developed invertible models, however, their approximation capabilities remain unexplored. This paper rigorously analyses the approximation capabilities of existing measure-preserving neural networks including NICE and RevNets. It is shown that for compact $U \subset \R^D$ with $D\geq 2$, the measure-preserving neural networks are able to approximate arbitrary measure-preserving map $\psi: U\to \R^D$ which is bounded and injective in the $L^p$-norm. In particular, any continuously differentiable injective map with $\pm 1$ determinant of Jacobian are measure-preserving, thus can be approximated.
Differential privacy is a mathematical concept that provides an information-theoretic security guarantee. While differential privacy has emerged as a de facto standard for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with some serious limitations. Utility guarantees are usually provided only for a fixed, a priori specified set of queries. Moreover, there are no utility guarantees for more complex - but very common - machine learning tasks such as clustering or classification. In this paper we overcome some of these limitations. Working with metric privacy, a powerful generalization of differential privacy, we develop a polynomial-time algorithm that creates a private measure from a data set. This private measure allows us to efficiently construct private synthetic data that are accurate for a wide range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-max result for private measures and synthetic data for general compact metric spaces. A key ingredient in our construction is a new superregular random walk, whose joint distribution of steps is as regular as that of independent random variables, yet which deviates from the origin logarithmicaly slowly.
Population dynamics is the study of temporal and spatial variation in the size of populations of organisms and is a major part of population ecology. One of the main difficulties in analyzing population dynamics is that we can only obtain observation data with coarse time intervals from fixed-point observations due to experimental costs or other constraints. Recently, modeling population dynamics by using continuous normalizing flows (CNFs) and dynamic optimal transport has been proposed to infer the expected trajectory of samples from a fixed-point observed population. While the sample behavior in CNF is deterministic, the actual sample in biological systems moves in an essentially random yet directional manner. Moreover, when a sample moves from point A to point B in dynamical systems, its trajectory is such that the corresponding action has the smallest possible value, known as the principle of least action. To satisfy these requirements of the sample trajectories, we formulate the Lagrangian Schr\"odinger bridge (LSB) problem and propose to solve it approximately using neural SDE with regularization. We also develop a model architecture that enables faster computation. Our experiments show that our solution to the LSB problem can approximate the dynamics at the population level and that using the prior knowledge introduced by the Lagrangian enables us to estimate the trajectories of individual samples with stochastic behavior.
In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.
Audio captioning aims at describing the content of audio clips with human language. Due to the ambiguity of audio, different people may perceive the same audio differently, resulting in caption disparities (i.e., one audio may correlate to several captions with diverse semantics). For that, general audio captioning models achieve the one-to-many training by randomly selecting a correlated caption as the ground truth for each audio. However, it leads to a significant variation in the optimization directions and weakens the model stability. To eliminate this negative effect, in this paper, we propose a two-stage framework for audio captioning: (i) in the first stage, via the contrastive learning, we construct a proxy feature space to reduce the distances between captions correlated to the same audio, and (ii) in the second stage, the proxy feature space is utilized as additional supervision to encourage the model to be optimized in the direction that benefits all the correlated captions. We conducted extensive experiments on two datasets using four commonly used encoder and decoder architectures. Experimental results demonstrate the effectiveness of the proposed method. The code is available at //github.com/PRIS-CV/Caption-Feature-Space-Regularization.
Momentum methods, including heavy-ball~(HB) and Nesterov's accelerated gradient~(NAG), are widely used in training neural networks for their fast convergence. However, there is a lack of theoretical guarantees for their convergence and acceleration since the optimization landscape of the neural network is non-convex. Nowadays, some works make progress towards understanding the convergence of momentum methods in an over-parameterized regime, where the number of the parameters exceeds that of the training instances. Nonetheless, current results mainly focus on the two-layer neural network, which are far from explaining the remarkable success of the momentum methods in training deep neural networks. Motivated by this, we investigate the convergence of NAG with constant learning rate and momentum parameter in training two architectures of deep linear networks: deep fully-connected linear neural networks and deep linear ResNets. Based on the over-parameterization regime, we first analyze the residual dynamics induced by the training trajectory of NAG for a deep fully-connected linear neural network under the random Gaussian initialization. Our results show that NAG can converge to the global minimum at a $(1 - \mathcal{O}(1/\sqrt{\kappa}))^t$ rate, where $t$ is the iteration number and $\kappa > 1$ is a constant depending on the condition number of the feature matrix. Compared to the $(1 - \mathcal{O}(1/{\kappa}))^t$ rate of GD, NAG achieves an acceleration over GD. To the best of our knowledge, this is the first theoretical guarantee for the convergence of NAG to the global minimum in training deep neural networks. Furthermore, we extend our analysis to deep linear ResNets and derive a similar convergence result.
Deep Neural Networks (DNNs) are vulnerable to invisible perturbations on the images generated by adversarial attacks, which raises researches on the adversarial robustness of DNNs. A series of methods represented by the adversarial training and its variants have proven as one of the most effective techniques in enhancing the DNN robustness. Generally, adversarial training focuses on enriching the training data by involving perturbed data. Despite of the efficiency in defending specific attacks, adversarial training is benefited from the data augmentation, which does not contribute to the robustness of DNN itself and usually suffers from accuracy drop on clean data as well as inefficiency in unknown attacks. Towards the robustness of DNN itself, we propose a novel defense that aims at augmenting the model in order to learn features adaptive to diverse inputs, including adversarial examples. Specifically, we introduce multiple paths to augment the network, and impose orthogonality constraints on these paths. In addition, a margin-maximization loss is designed to further boost DIversity via Orthogonality (DIO). Extensive empirical results on various data sets, architectures, and attacks demonstrate the adversarial robustness of the proposed DIO.
The problem of active mapping aims to plan an informative sequence of sensing views given a limited budget such as distance traveled. This paper consider active occupancy grid mapping using a range sensor, such as LiDAR or depth camera. State-of-the-art methods optimize information-theoretic measures relating the occupancy grid probabilities with the range sensor measurements. The non-smooth nature of ray-tracing within a grid representation makes the objective function non-differentiable, forcing existing methods to search over a discrete space of candidate trajectories. This work proposes a differentiable approximation of the Shannon mutual information between a grid map and ray-based observations that enables gradient ascent optimization in the continuous space of SE(3) sensor poses. Our gradient-based formulation leads to more informative sensing trajectories, while avoiding occlusions and collisions. The proposed method is demonstrated in simulated and real-world experiments in 2-D and 3-D environments.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.