亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a stochastic collocation method based on the piecewise constant interpolation on the probability space combined with a finite volume method to solve the compressible Navier-Stokes system at the nodal points. We show convergence of numerical solutions to a statistical solution of the Navier-Stokes system on condition that the numerical solutions are bounded in probability. The analysis uses the stochastic compactness method based on the Skorokhod/Jakubowski representation theorem and the criterion of convergence in probability due to Gy\"ongy and Krylov.

相關內容

The recently proposed statistical finite element (statFEM) approach synthesises measurement data with finite element models and allows for making predictions about the true system response. We provide a probabilistic error analysis for a prototypical statFEM setup based on a Gaussian process prior under the assumption that the noisy measurement data are generated by a deterministic true system response function that satisfies a second-order elliptic partial differential equation for an unknown true source term. In certain cases, properties such as the smoothness of the source term may be misspecified by the Gaussian process model. The error estimates we derive are for the expectation with respect to the measurement noise of the $L^2$-norm of the difference between the true system response and the mean of the statFEM posterior. The estimates imply polynomial rates of convergence in the numbers of measurement points and finite element basis functions and depend on the Sobolev smoothness of the true source term and the Gaussian process model. A numerical example for Poisson's equation is used to illustrate these theoretical results.

In this paper, we study the generalized multiscale finite element method (GMsFEM) for single phase compressible flow in highly heterogeneous porous media. We follow the major steps of the GMsFEM to construct permeability dependent offline basis for fast coarse-grid simulation. The offline coarse space is efficiently constructed only once based on the initial permeability field with parallel computing. A rigorous convergence analysis is performed for two types of snapshot spaces. The analysis indicates that the convergence rates of the proposed multiscale method depend on the coarse meshsize and the eigenvalue decay of the local spectral problem. To further increase the accuracy of multiscale method, residual driven online multiscale basis is added to the offline space. The construction of online multiscale basis is based on a carefully design error indicator motivated by the analysis. We find that online basis is particularly important for the singular source. Rich numerical tests on typical 3D highly heterogeneous medias are presented to demonstrate the impressive computational advantages of the proposed multiscale method.

Mirror descent (MD) is a powerful first-order optimization technique that subsumes several optimization algorithms including gradient descent (GD). In this work, we develop a semi-definite programming (SDP) framework to analyze the convergence rate of MD in centralized and distributed settings under both strongly convex and non-strongly convex assumptions. We view MD with a dynamical system lens and leverage quadratic constraints (QCs) to provide explicit convergence rates based on Lyapunov stability. For centralized MD under strongly convex assumption, we develop a SDP that certifies exponential convergence rates. We prove that the SDP always has a feasible solution that recovers the optimal GD rate as a special case. We complement our analysis by providing the $O(1/k)$ convergence rate for convex problems. Next, we analyze the convergence of distributed MD and characterize the rate using SDP. To the best of our knowledge, the numerical rate of distributed MD has not been previously reported in the literature. We further prove an $O(1/k)$ convergence rate for distributed MD in the convex setting. Our numerical experiments on strongly convex problems indicate that our framework certifies superior convergence rates compared to the existing rates for distributed GD.

We develop a family of cut finite element methods of different orders based on the discontinuous Galerkin framework, for hyperbolic conservation laws with stationary interfaces in both one and two space dimensions, and for moving interfaces in one space dimension. Interface conditions are imposed weakly and so that both conservation and stability are ensured. A CutFEM with discontinuous elements in space is developed and coupled to standard explicit time-stepping schemes for linear advection problems and the acoustic wave problem with stationary interfaces. In the case of moving interfaces, we propose a space-time CutFEM based on discontinuous elements both in space and time for linear advection problems. We show that the proposed CutFEM are conservative and energy stable. For the stationary interface case an a priori error estimate is proven. Numerical computations in both one and two space dimensions support the analysis, and in addition demonstrate that the proposed methods have the expected accuracy.

We show that a specific skew-symmetric form of hyperbolic problems leads to energy conservation and an energy bound. Next, the compressible Euler equations is transformed to this skew-symmetric form and it is explained how to obtain an energy estimate. Finally we show that the new formulation lead to energy stable and energy conserving discrete approximations if the scheme is formulated on summation-by-parts form.

In this paper we propose a deep learning based numerical scheme for strongly coupled FBSDE, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the means square error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDE, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.

In this paper we study the numerical method for approximating the random periodic solution of semiliear stochastic evolution equations. The main challenge lies in proving a convergence over an infinite time horizon while simulating infinite-dimensional objects. We first show the existence and uniqueness of the random periodic solution to the equation as the limit of the pull-back flows of the equation, and observe that its mild form is well-defined in the intersection of a family of decreasing Hilbert spaces. Then we propose a Galerkin-type exponential integrator scheme and establish its convergence rate of the strong error to the mild solution, where the order of convergence directly depends on the space (among the family of Hilbert spaces) for the initial point to live. We finally conclude with the best order of convergence that is arbitrarily close to 0.5.

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation, and the computational domain is divided into overlapping sub-domains centered on each node. Combining with moving least square approximation and local Taylor expansion, derivatives of oil-phase pressure at the central node are approximated by a generalized difference operator in the local subdomain. By introducing the first-order upwind scheme of phase permeability, and combining the discrete boundary conditions, fully implicit GFDM discrete nonlinear equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation technology, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, and points out the significant effect of the symmetry or uniformity of the node allocation in the node influence domain on the accuracy of the generalized difference operator, and the radius of node influence domain should be as small as possible to achieve high calculation accuracy, which is a significant difference between the studied parabolic two-phase porous flow problem and the elliptic equation previously studied by GFDM. In all, the upwind GFDM with the fully implicit nonlinear solver and related analysis about computational performances given in this work may provide a critical reference for developing a general-purpose meshless numerical simulator for porous flow problems.

We propose a new unfitted finite element method for simulation of two-phase flows in presence of insoluble surfactant. The key features of the method are 1) discrete conservation of surfactant mass; 2) the possibility of having meshes that do not conform to the evolving interface separating the immiscible fluids; 3) accurate approximation of quantities with weak or strong discontinuities across evolving geometries such as the velocity field and the pressure. The new discretization of the incompressible Navier--Stokes equations coupled to the convection-diffusion equation modeling the surfactant transport on evolving surfaces is based on a space-time cut finite element formulation with quadrature in time and a stabilization term in the weak formulation that provides function extension. The proposed strategy utilize the same computational mesh for the discretization of the surface Partial Differential Equation (PDE) and the bulk PDEs and can be combined with different techniques for representing and evolving the interface, here the level set method is used. Numerical simulations in both two and three space dimensions are presented including simulations showing the role of surfactant in the interaction between two drops.

In this paper, we propose a new trace finite element method for the {Laplace-Beltrami} eigenvalue problem. The method is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. A comprehensive analysis for the method is provided. We show that the eigenvalues of the discrete Laplace-Beltrami operator coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in {\it Hochstenbach et al. SIAM J. Matrix Anal. Appl., 2019} \cite{hochstenbach2019solving}. We prove the method has optimal convergence rate. Numerical experiments verify the theoretical analysis and show that the geometric consistency can improve the numerical accuracy significantly.

北京阿比特科技有限公司