亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most modern computing tasks have digital electronic input and output data. Due to these constraints imposed by real-world use cases of computer systems, any analog computing accelerator, whether analog electronic or optical, must perform an analog-to-digital conversion on its input data and a subsequent digital-to-analog conversion on its output data. The energy and latency costs incurred by data conversion place performance limits on analog computing accelerators. To avoid this overhead, analog hardware must replace the full functionality of traditional digital electronic computer hardware. This is not currently possible for optical computing accelerators due to limitations in gain, input-output isolation, and information storage in optical hardware. This article presents a case study that profiles 27 benchmarks for an analog optical Fourier transform and convolution accelerator which we designed and built. The case study shows that an ideal optical Fourier transform and convolution accelerator can produce an average speedup of 9.4 times and a median speedup of 1.9 times for the set of benchmarks. The optical Fourier transform and convolution accelerator only produces significant speedup for pure Fourier transform (45.3 times) and convolution (159.4 times) applications.

相關內容

Human motion stylization aims to revise the style of an input motion while keeping its content unaltered. Unlike existing works that operate directly in pose space, we leverage the latent space of pretrained autoencoders as a more expressive and robust representation for motion extraction and infusion. Building upon this, we present a novel generative model that produces diverse stylization results of a single motion (latent) code. During training, a motion code is decomposed into two coding components: a deterministic content code, and a probabilistic style code adhering to a prior distribution; then a generator massages the random combination of content and style codes to reconstruct the corresponding motion codes. Our approach is versatile, allowing the learning of probabilistic style space from either style labeled or unlabeled motions, providing notable flexibility in stylization as well. In inference, users can opt to stylize a motion using style cues from a reference motion or a label. Even in the absence of explicit style input, our model facilitates novel re-stylization by sampling from the unconditional style prior distribution. Experimental results show that our proposed stylization models, despite their lightweight design, outperform the state-of-the-arts in style reeanactment, content preservation, and generalization across various applications and settings. Project Page: //yxmu.foo/GenMoStyle

Strategies synthesized using formal methods can be complex and often require infinite memory, which does not correspond to the expected behavior when trying to model Multi-Agent Systems (MAS). To capture such behaviors, natural strategies are a recently proposed framework striking a balance between the ability of agents to strategize with memory and the model-checking complexity, but until now has been restricted to fully deterministic settings. For the first time, we consider the probabilistic temporal logics PATL and PATL* under natural strategies (NatPATL and NatPATL*, resp.). As main result we show that, in stochastic MAS, NatPATL model-checking is NP-complete when the active coalition is restricted to deterministic strategies. We also give a 2NEXPTIME complexity result for NatPATL* with the same restriction. In the unrestricted case, we give an EXPSPACE complexity for NatPATL and 3EXPSPACE complexity for NatPATL*.

Large language models (LLMs) have recently gained significant attention due to their unparalleled ability to perform various natural language processing tasks. These models, benefiting from their advanced natural language understanding capabilities, have demonstrated impressive zero-shot performance. However, the pre-training data utilized in LLMs is often confined to a specific corpus, resulting in inherent freshness and temporal scope limitations. Consequently, this raises concerns regarding the effectiveness of LLMs for tasks involving temporal intents. In this study, we aim to investigate the underlying limitations of general-purpose LLMs when deployed for tasks that require a temporal understanding. We pay particular attention to handling factual temporal knowledge through three popular temporal QA datasets. Specifically, we observe low performance on detailed questions about the past and, surprisingly, for rather new information. In manual and automatic testing, we find multiple temporal errors and characterize the conditions under which QA performance deteriorates. Our analysis contributes to understanding LLM limitations and offers valuable insights into developing future models that can better cater to the demands of temporally-oriented tasks. The code is available\footnote{//github.com/jwallat/temporalblindspots}.

We prove that the long-run behavior of Hawkes processes is fully determined by the average number and the dispersion of child events. For subcritical processes we provide FLLNs and FCLTs under minimal conditions on the kernel of the process with the precise form of the limit theorems depending strongly on the dispersion of child events. For a critical Hawkes process with weakly dispersed child events, functional central limit theorems do not hold. Instead, we prove that the rescaled intensity processes and rescaled Hawkes processes behave like CIR-processes without mean-reversion, respectively integrated CIR-processes. We provide the rate of convergence by establishing an upper bound on the Wasserstein distance between the distributions of rescaled Hawkes process and the corresponding limit process. By contrast, critical Hawkes process with heavily dispersed child events share many properties of subcritical ones. In particular, functional limit theorems hold. However, unlike subcritical processes critical ones with heavily dispersed child events display long-range dependencies.

Machinery for data analysis often requires a numeric representation of the input. Towards that, a common practice is to embed components of structured data into a high-dimensional vector space. We study the embedding of the tuples of a relational database, where existing techniques are often based on optimization tasks over a collection of random walks from the database. The focus of this paper is on the recent FoRWaRD algorithm that is designed for dynamic databases, where walks are sampled by following foreign keys between tuples. Importantly, different walks have different schemas, or "walk schemes", that are derived by listing the relations and attributes along the walk. Also importantly, different walk schemes describe relationships of different natures in the database. We show that by focusing on a few informative walk schemes, we can obtain tuple embedding significantly faster, while retaining the quality. We define the problem of scheme selection for tuple embedding, devise several approaches and strategies for scheme selection, and conduct a thorough empirical study of the performance over a collection of downstream tasks. Our results confirm that with effective strategies for scheme selection, we can obtain high-quality embeddings considerably (e.g., three times) faster, preserve the extensibility to newly inserted tuples, and even achieve an increase in the precision of some tasks.

This work aims to address an open problem in data valuation literature concerning the efficient computation of Data Shapley for weighted $K$ nearest neighbor algorithm (WKNN-Shapley). By considering the accuracy of hard-label KNN with discretized weights as the utility function, we reframe the computation of WKNN-Shapley into a counting problem and introduce a quadratic-time algorithm, presenting a notable improvement from $O(N^K)$, the best result from existing literature. We develop a deterministic approximation algorithm that further improves computational efficiency while maintaining the key fairness properties of the Shapley value. Through extensive experiments, we demonstrate WKNN-Shapley's computational efficiency and its superior performance in discerning data quality compared to its unweighted counterpart.

Neurosymbolic AI aims to integrate deep learning with symbolic AI. This integration has many promises, such as decreasing the amount of data required to train a neural network, improving the explainability and interpretability of answers given by models and verifying the correctness of trained systems. We study neurosymbolic learning, where we have both data and background knowledge expressed using symbolic languages. How do we connect the symbolic and neural components to communicate this knowledge? One option is fuzzy reasoning, which studies degrees of truth. For example, being tall is not a binary concept. Instead, probabilistic reasoning studies the probability that something is true or will happen. Our first research question studies how different forms of fuzzy reasoning combine with learning. We find surprising results like a connection to the Raven paradox stating we confirm "ravens are black" when we observe a green apple. In this study, we did not use the background knowledge when we deployed our models after training. In our second research question, we studied how to use background knowledge in deployed models. We developed a new neural network layer based on fuzzy reasoning. Probabilistic reasoning is a natural fit for neural networks, which we usually train to be probabilistic. However, they are expensive to compute and do not scale well to large tasks. In our third research question, we study how to connect probabilistic reasoning with neural networks by sampling to estimate averages, while in the final research question, we study scaling probabilistic neurosymbolic learning to much larger problems than before. Our insight is to train a neural network with synthetic data to predict the result of probabilistic reasoning.

Behemoth graphs are often fragmented and separately stored by multiple data owners as distributed subgraphs in many realistic applications. Without harming data privacy, it is natural to consider the subgraph federated learning (subgraph FL) scenario, where each local client holds a subgraph of the entire global graph, to obtain globally generalized graph mining models. To overcome the unique challenge of incomplete information propagation on local subgraphs due to missing cross-subgraph neighbors, previous works resort to the augmentation of local neighborhoods through the joint FL of missing neighbor generators and GNNs. Yet their technical designs have profound limitations regarding the utility, efficiency, and privacy goals of FL. In this work, we propose FedDEP to comprehensively tackle these challenges in subgraph FL. FedDEP consists of a series of novel technical designs: (1) Deep neighbor generation through leveraging the GNN embeddings of potential missing neighbors; (2) Efficient pseudo-FL for neighbor generation through embedding prototyping; and (3) Privacy protection through noise-less edge-local-differential-privacy. We analyze the correctness and efficiency of FedDEP, and provide theoretical guarantees on its privacy. Empirical results on four real-world datasets justify the clear benefits of proposed techniques.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司