The limited memory steepest descent method (Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method to improve the use of harmonic Ritz values. We also show the existence of a secant condition associated with LMSD, where the approximating Hessian is projected onto a low-dimensional space. In the general nonlinear case, we propose two new alternatives to Fletcher's method: first, the addition of symmetry constraints to the secant condition valid for the quadratic case; second, a perturbation of the last differences between consecutive gradients, to satisfy multiple secant equations simultaneously. We show that Fletcher's method can also be interpreted from this viewpoint.
The ability of Deep Learning to process and extract relevant information in complex brain dynamics from raw EEG data has been demonstrated in various recent works. Deep learning models, however, have also been shown to perform best on large corpora of data. When processing EEG, a natural approach is to combine EEG datasets from different experiments to train large deep-learning models. However, most EEG experiments use custom channel montages, requiring the data to be transformed into a common space. Previous methods have used the raw EEG signal to extract features of interest and focused on using a common feature space across EEG datasets. While this is a sensible approach, it underexploits the potential richness of EEG raw data. Here, we explore using spatial attention applied to EEG electrode coordinates to perform channel harmonization of raw EEG data, allowing us to train deep learning on EEG data using different montages. We test this model on a gender classification task. We first show that spatial attention increases model performance. Then, we show that a deep learning model trained on data using different channel montages performs significantly better than deep learning models trained on fixed 23- and 128-channel data montages.
Engineers are often faced with the decision to select the most appropriate model for simulating the behavior of engineered systems, among a candidate set of models. Experimental monitoring data can generate significant value by supporting engineers toward such decisions. Such data can be leveraged within a Bayesian model updating process, enabling the uncertainty-aware calibration of any candidate model. The model selection task can subsequently be cast into a problem of decision-making under uncertainty, where one seeks to select the model that yields an optimal balance between the reward associated with model precision, in terms of recovering target Quantities of Interest (QoI), and the cost of each model, in terms of complexity and compute time. In this work, we examine the model selection task by means of Bayesian decision theory, under the prism of availability of models of various refinements, and thus varying levels of fidelity. In doing so, we offer an exemplary application of this framework on the IMAC-MVUQ Round-Robin Challenge. Numerical investigations show various outcomes of model selection depending on the target QoI.
Application of deep learning methods to physical simulations such as CFD (Computational Fluid Dynamics) for turbomachinery applications, have been so far of limited industrial relevance. This paper demonstrates the development and application of a deep learning framework for real-time predictions of the impact of tip clearance variations on the flow field and aerodynamic performance of multi-stage axial compressors in gas turbines. The proposed architecture is proven to be scalable to industrial applications, and achieves in real-time accuracy comparable to the CFD benchmark. The deployed model, is readily integrated within the manufacturing and build process of gas turbines, thus providing the opportunity to analytically assess the impact on performance and potentially reduce requirements for expensive physical tests.
This paper presents a method using data-driven models for selecting actions and predicting the total performance of autonomous wheel loader operations over many loading cycles in a changing environment. The performance includes loaded mass, loading time, work. The data-driven models input the control parameters of a loading action and the heightmap of the initial pile state to output the inference of either the performance or the resulting pile state. By iteratively utilizing the resulting pile state as the initial pile state for consecutive predictions, the prediction method enables long-horizon forecasting. Deep neural networks were trained on data from over 10,000 random loading actions in gravel piles of different shapes using 3D multibody dynamics simulation. The models predict the performance and the resulting pile state with, on average, 95% accuracy in 1.2 ms, and 97% in 4.5 ms, respectively. The performance prediction was found to be even faster in exchange for accuracy by reducing the model size with the lower dimensional representation of the pile state using its slope and curvature. The feasibility of long-horizon predictions was confirmed with 40 sequential loading actions at a large pile. With the aid of a physics-based model, the pile state predictions are kept sufficiently accurate for longer-horizon use.
This paper explores the generalization characteristics of iterative learning algorithms with bounded updates for non-convex loss functions, employing information-theoretic techniques. Our key contribution is a novel bound for the generalization error of these algorithms with bounded updates. Our approach introduces two main novelties: 1) we reformulate the mutual information as the uncertainty of updates, providing a new perspective, and 2) instead of using the chaining rule of mutual information, we employ a variance decomposition technique to decompose information across iterations, allowing for a simpler surrogate process. We analyze our generalization bound under various settings and demonstrate improved bounds. To bridge the gap between theory and practice, we also examine the previously observed scaling behavior in large language models. Ultimately, our work takes a further step for developing practical generalization theories.
Microring resonators (MRRs) are promising devices for time-delay photonic reservoir computing, but the impact of the different physical effects taking place in the MRRs on the reservoir computing performance is yet to be fully understood. We numerically analyze the impact of linear losses as well as thermo-optic and free-carrier effects relaxation times on the prediction error of the time-series task NARMA-10. We demonstrate the existence of three regions, defined by the input power and the frequency detuning between the optical source and the microring resonance, that reveal the cavity transition from linear to nonlinear regimes. One of these regions offers very low error in time-series prediction under relatively low input power and number of nodes while the other regions either lack nonlinearity or become unstable. This study provides insight into the design of the MRR and the optimization of its physical properties for improving the prediction performance of time-delay reservoir computing.
We formulate and solve data-driven aerodynamic shape design problems with distributionally robust optimization (DRO) approaches. Building on the findings of the work \cite{gotoh2018robust}, we study the connections between a class of DRO and the Taguchi method in the context of robust design optimization. Our preliminary computational experiments on aerodynamic shape optimization in transonic turbulent flow show promising design results.
Stiff systems of ordinary differential equations (ODEs) and sparse training data are common in scientific problems. This paper describes efficient, implicit, vectorized methods for integrating stiff systems of ordinary differential equations through time and calculating parameter gradients with the adjoint method. The main innovation is to vectorize the problem both over the number of independent times series and over a batch or "chunk" of sequential time steps, effectively vectorizing the assembly of the implicit system of ODEs. The block-bidiagonal structure of the linearized implicit system for the backward Euler method allows for further vectorization using parallel cyclic reduction (PCR). Vectorizing over both axes of the input data provides a higher bandwidth of calculations to the computing device, allowing even problems with comparatively sparse data to fully utilize modern GPUs and achieving speed ups of greater than 100x, compared to standard, sequential time integration. We demonstrate the advantages of implicit, vectorized time integration with several example problems, drawn from both analytical stiff and non-stiff ODE models as well as neural ODE models. We also describe and provide a freely available open-source implementation of the methods developed here.
Since the tension instability was discovered in updated Lagrangian smoothed particle hydrodynamics (ULSPH) at the end of the 20th century, researchers have made considerable efforts to suppress its occurrence. However, up to the present day, this problem has not been fundamentally resolved. In this paper, the concept of hourglass modes is firstly introduced into ULSPH, and the inherent causes of tension instability in elastic dynamics are clarified based on this brand-new perspective. Specifically, we present an essentially non-hourglass formulation by decomposing the shear acceleration with the Laplacian operator, and a comprehensive set of challenging benchmark cases for elastic dynamics is used to showcase that our method can completely eliminate tensile instability by resolving hourglass modes. The present results reveal the true origin of tension instability and challenge the traditional understanding of its sources, i.e., hourglass modes are the real culprit behind inducing this instability in tension zones rather that the tension itself. Furthermore, a time integration scheme known as dual-criteria time stepping is adopted into the simulation of solids for the first time, to significantly enhance computational efficiency.
Recurrent neural networks (RNNs) have yielded promising results for both recognizing objects in challenging conditions and modeling aspects of primate vision. However, the representational dynamics of recurrent computations remain poorly understood, especially in large-scale visual models. Here, we studied such dynamics in RNNs trained for object classification on MiniEcoset, a novel subset of ecoset. We report two main insights. First, upon inference, representations continued to evolve after correct classification, suggesting a lack of the notion of being ``done with classification''. Second, focusing on ``readout zones'' as a way to characterize the activation trajectories, we observe that misclassified representations exhibit activation patterns with lower L2 norm, and are positioned more peripherally in the readout zones. Such arrangements help the misclassified representations move into the correct zones as time progresses. Our findings generalize to networks with lateral and top-down connections, and include both additive and multiplicative interactions with the bottom-up sweep. The results therefore contribute to a general understanding of RNN dynamics in naturalistic tasks. We hope that the analysis framework will aid future investigations of other types of RNNs, including understanding of representational dynamics in primate vision.