亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Probability predictions are essential to inform decision making in medicine, economics, image classification, sports analytics, entertainment, and many other fields. Ideally, probability predictions are (i) well calibrated, (ii) accurate, and (iii) bold, i.e., far from the base rate of the event. Predictions that satisfy these three criteria are informative for decision making. However, there is a fundamental tension between calibration and boldness, since calibration metrics can be high when predictions are overly cautious, i.e., non-bold. The purpose of this work is to develop a hypothesis test and Bayesian model selection approach to assess calibration, and a strategy for boldness-recalibration that enables practitioners to responsibly embolden predictions subject to their required level of calibration. Specifically, we allow the user to pre-specify their desired posterior probability of calibration, then maximally embolden predictions subject to this constraint. We verify the performance of our procedures via simulation, then demonstrate the breadth of applicability by applying these methods to real world case studies in each of the fields mentioned above. We find that very slight relaxation of calibration probability (e.g., from 0.99 to 0.95) can often substantially embolden predictions (e.g., widening Hockey predictions' range from .25-.75 to .10-.90)

相關內容

While automotive radar sensors are widely adopted and have been used for automatic cruise control and collision avoidance tasks, their application outside of vehicles is still limited. As they have the ability to resolve multiple targets in 3D space, radars can also be used for improving environment perception. This application, however, requires a precise calibration, which is usually a time-consuming and labor-intensive task. We, therefore, present an approach for automated and geo-referenced extrinsic calibration of automotive radar sensors that is based on a novel hypothesis filtering scheme. Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles. This location data is then combined with filtered sensor data to create calibration hypotheses. Subsequent filtering and optimization recovers the correct calibration. Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner, thus enabling cooperative driving scenarios.

Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10.

The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimizing the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the SEIR (Susceptible-Exposed-Infectious-Recovered) model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions.

In many modern statistical problems, the limited available data must be used both to develop the hypotheses to test, and to test these hypotheses-that is, both for exploratory and confirmatory data analysis. Reusing the same dataset for both exploration and testing can lead to massive selection bias, leading to many false discoveries. Selective inference is a framework that allows for performing valid inference even when the same data is reused for exploration and testing. In this work, we are interested in the problem of selective inference for data clustering, where a clustering procedure is used to hypothesize a separation of the data points into a collection of subgroups, and we then wish to test whether these data-dependent clusters in fact represent meaningful differences within the data. Recent work by Gao et al. [2022] provides a framework for doing selective inference for this setting, where a hierarchical clustering algorithm is used for producing the cluster assignments, which was then extended to k-means clustering by Chen and Witten [2022]. Both these works rely on assuming a known covariance structure for the data, but in practice, the noise level needs to be estimated-and this is particularly challenging when the true cluster structure is unknown. In our work, we extend this work to the setting of noise with unknown variance, and provide a selective inference method for this more general setting. Empirical results show that our new method is better able to maintain high power while controlling Type I error when the true noise level is unknown.

The focus of precision medicine is on decision support, often in the form of dynamic treatment regimes (DTRs), which are sequences of decision rules. At each decision point, the decision rules determine the next treatment according to the patient's baseline characteristics, the information on treatments and responses accrued by that point, and the patient's current health status, including symptom severity and other measures. However, DTR estimation with ordinal outcomes is rarely studied, and rarer still in the context of interference - where one patient's treatment may affect another's outcome. In this paper, we introduce the proposed weighted proportional odds model (WPOM): a regression-based, doubly-robust approach to single-stage DTR estimation for ordinal outcomes. This method also accounts for the possibility of interference between individuals sharing a household through the use of covariate balancing weights derived from joint propensity scores. Examining different types of balancing weights, we verify the double robustness of WPOM with our adjusted weights via simulation studies. We further extend WPOM to multi-stage DTR estimation with household interference. Lastly, we demonstrate our proposed methodology in the analysis of longitudinal survey data from the Population Assessment of Tobacco and Health study, which motivates this work.

Rapid and accurate building damage assessments from high-resolution satellite imagery following a natural disaster is essential to inform and optimize first responder efforts. However, performing such building damage assessments in an automated manner is non-trivial due to the challenges posed by variations in disaster-specific damage, diversity in satellite imagery, and the dearth of extensive, labeled datasets. To circumvent these issues, this paper introduces a human-in-the-loop workflow for rapidly training building damage assessment models after a natural disaster. This article details a case study using this workflow, executed in partnership with the American Red Cross during a tornado event in Rolling Fork, Mississippi in March, 2023. The output from our human-in-the-loop modeling process achieved a precision of 0.86 and recall of 0.80 for damaged buildings when compared to ground truth data collected post-disaster. This workflow was implemented end-to-end in under 2 hours per satellite imagery scene, highlighting its potential for real-time deployment.

Meta-analysis aggregates information across related studies to provide more reliable statistical inference and has been a vital tool for assessing the safety and efficacy of many high profile pharmaceutical products. A key challenge in conducting a meta-analysis is that the number of related studies is typically small. Applying classical methods that are asymptotic in the number of studies can compromise the validity of inference, particularly when heterogeneity across studies is present. Moreover, serious adverse events are often rare and can result in one or more studies with no events in at least one study arm. While it is common to use arbitrary continuity corrections or remove zero-event studies to stabilize or define effect estimates in such settings, these practices can invalidate subsequent inference. To address these significant practical issues, we introduce an exact inference method for comparing event rates in two treatment arms under a random effects framework, which we coin "XRRmeta". In contrast to existing methods, the coverage of the confidence interval from XRRmeta is guaranteed to be at or above the nominal level (up to Monte Carlo error) when the event rates, number of studies, and/or the within-study sample sizes are small. XRRmeta is also justified in its treatment of zero-event studies through a conditional inference argument. Importantly, our extensive numerical studies indicate that XRRmeta does not yield overly conservative inference. We apply our proposed method to reanalyze the occurrence of major adverse cardiovascular events among type II diabetics treated with rosiglitazone and in a more recent example examining the utility of face masks in preventing person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19).

For safety and robustness of AI systems, we introduce topological parallax as a theoretical and computational tool that compares a trained model to a reference dataset to determine whether they have similar multiscale geometric structure. Our proofs and examples show that this geometric similarity between dataset and model is essential to trustworthy interpolation and perturbation, and we conjecture that this new concept will add value to the current debate regarding the unclear relationship between overfitting and generalization in applications of deep-learning. In typical DNN applications, an explicit geometric description of the model is impossible, but parallax can estimate topological features (components, cycles, voids, etc.) in the model by examining the effect on the Rips complex of geodesic distortions using the reference dataset. Thus, parallax indicates whether the model shares similar multiscale geometric features with the dataset. Parallax presents theoretically via topological data analysis [TDA] as a bi-filtered persistence module, and the key properties of this module are stable under perturbation of the reference dataset.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

北京阿比特科技有限公司