亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ensuring high-quality video content for wireless users has become increasingly vital. Nevertheless, maintaining a consistent level of video quality faces challenges due to the fluctuating encoded bitrate, primarily caused by dynamic video content, especially in live streaming scenarios. Video compression is typically employed to eliminate unnecessary redundancies within and between video frames, thereby reducing the required bandwidth for video transmission. The encoded bitrate and the quality of the compressed video depend on encoder parameters, specifically, the quantization parameter (QP). Poor choices of encoder parameters can result in reduced bandwidth efficiency and high likelihood of non-conformance. Non-conformance refers to the violation of the peak signal-to-noise ratio (PSNR) constraint for an encoded video segment. To address these issues, a real-time deep learning-based H.264 controller is proposed. This controller dynamically estimates the optimal encoder parameters based on the content of a video chunk with minimal delay. The objective is to maintain video quality in terms of PSNR above a specified threshold while minimizing the average bitrate of the compressed video. Experimental results, conducted on both QCIF dataset and a diverse range of random videos from public datasets, validate the effectiveness of this approach. Notably, it achieves improvements of up to 2.5 times in average bandwidth usage compared to the state-of-the-art adaptive bitrate video streaming, with a negligible non-conformance probability below $10^{-2}$.

相關內容

The 6G paradigm and the massive usage of interconnected wireless devices introduced the need for flexible wireless networks. A promising approach lies in employing Mobile Robotic Platforms (MRPs) to create communications cells on-demand. The challenge consists in positioning the MRPs to improve the wireless connectivity offered. This is exacerbated in millimeter wave (mmWave), Terahertz (THz), and visible light-based networks, which imply the establishment of short-range, Line of Sight (LoS) wireless links to take advantage of the ultra-high bandwidth channels available. This paper proposes a solution to enable the obstacle-aware, autonomous positioning of MRPs and provide LoS wireless connectivity to communications devices. It consists of 1) a Vision Module that uses video data gathered by the MRP to determine the location of obstacles, wireless devices and users, and 2) a Control Module, which autonomously positions the MRP based on the information provided by the Vision Module. The proposed solution was validated in simulation and through experimental testing, showing that it is able to position an MRP while ensuring LoS wireless links between a mobile communications cell and wireless devices or users.

Recommendation systems, for documents, have become tools to find relevant content on the Web. However, these systems have limitations when it comes to recommending documents in languages different from the query language, which means they might overlook resources in non-native languages. This research focuses on representing documents across languages by using Transformer Leveraged Document Representations (TLDRs) that are mapped to a cross-lingual domain. Four multilingual pre-trained transformer models (mBERT, mT5 XLM RoBERTa, ErnieM) were evaluated using three mapping methods across 20 language pairs representing combinations of five selected languages of the European Union. Metrics like Mate Retrieval Rate and Reciprocal Rank were used to measure the effectiveness of mapped TLDRs compared to non-mapped ones. The results highlight the power of cross-lingual representations achieved through pre-trained transformers and mapping approaches suggesting a promising direction for expanding beyond language connections, between two specific languages.

The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - //github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.

Text-attributed graphs (TAGs) are prevalent on the web and research over TAGs such as citation networks, e-commerce networks and social networks has attracted considerable attention in the web community. Recently, large language models (LLMs) have demonstrated exceptional capabilities across a wide range of tasks. However, the existing works focus on harnessing the potential of LLMs solely relying on prompts to convey graph structure information to LLMs, thus suffering from insufficient understanding of the complex structural relationships within TAGs. To address this problem, in this paper we present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs. Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers, enabling LLMs to capture the intricate relationships hidden in text-attributed graphs from multiple structural factors. Furthermore, DGTL operates with frozen pre-trained LLMs, reducing computational costs and allowing much more flexibility in combining with different LLM models. Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines. Additionally, we also demonstrate that our DGTL model can offer natural language explanations for predictions, thereby significantly enhancing model interpretability.

In this new digital era, accessibility to real-world events is moving towards web-based modules. This is mostly visible on e-commerce websites where there is limited availability of physical verification. With this unforeseen development, we depend on the verification in the virtual world to influence our decisions. One of the decision making process is deeply based on review reading. Reviews play an important part in this transactional process. And seeking a real review can be very tenuous work for the user. On the other hand, fake review heavily impacts these transaction records of a product. The article presents an implementation of a Siamese network for detecting fake reviews. The fake reviews dataset, consisting of 40K reviews, preprocessed with different techniques. The cleaned data is passed through embeddings generated by MiniLM BERT for contextual relationship and Word2Vec for semantic relationship to form vectors. Further, the embeddings are trained in a Siamese network with LSTM layers connected to fuzzy logic for decision-making. The results show that fake reviews can be detected with high accuracy on a siamese network for prediction and verification.

In Conversational Recommendation Systems (CRS), a user can provide feedback on recommended items at each interaction turn, leading the CRS towards more desirable recommendations. Currently, different types of CRS offer various possibilities for feedback, i.e., natural language feedback, or answering clarifying questions. In most cases, a user simulator is employed for training as well as evaluating the CRS. Such user simulators typically critique the current retrieved items based on knowledge of a single target item. Still, evaluating systems in offline settings with simulators suffers from problems, such as focusing entirely on a single target item (not addressing the exploratory nature of a recommender system), and exhibiting extreme patience (consistent feedback over a large number of turns). To overcome these limitations, we obtain extra judgements for a selection of alternative items in common CRS datasets, namely Shoes and Fashion IQ Dresses. Going further, we propose improved user simulators that allow simulated users not only to express their preferences about alternative items to their original target, but also to change their mind and level of patience. In our experiments using the relative image captioning CRS setting and different CRS models, we find that using the knowledge of alternatives by the simulator can have a considerable impact on the evaluation of existing CRS models, specifically that the existing single-target evaluation underestimates their effectiveness, and when simulated users are allowed to instead consider alternatives, the system can rapidly respond to more quickly satisfy the user.

Generative AI has become pervasive in society, witnessing significant advancements in various domains. Particularly in the realm of Text-to-Image (TTI) models, Latent Diffusion Models (LDMs), showcase remarkable capabilities in generating visual content based on textual prompts. This paper addresses the potential of LDMs in representing local cultural concepts, historical figures, and endangered species. In this study, we use the cultural heritage of Rio Grande do Sul (RS), Brazil, as an illustrative case. Our objective is to contribute to the broader understanding of how generative models can help to capture and preserve the cultural and historical identity of regions. The paper outlines the methodology, including subject selection, dataset creation, and the fine-tuning process. The results showcase the images generated, alongside the challenges and feasibility of each concept. In conclusion, this work shows the power of these models to represent and preserve unique aspects of diverse regions and communities.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司