亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We improve bounds on the degree and sparsity of Boolean functions representing the Legendre symbol as well as on the $N$th linear complexity of the Legendre sequence. We also prove similar results for both the Liouville function for integers and its analog for polynomials over $\mathbb{F}_2$, or more general for any (binary) arithmetic function which satisfies $f(2n)=-f(n)$ for $n=1,2,\ldots$

相關內容

The sum of quantum computing errors is the key element both for the estimation and control of errors in quantum computing and for its statistical study. In this article we analyze the sum of two independent quantum computing errors, $X_1$ and $X_2$, and we obtain the formula of the variance of the sum of these errors: $$ V(X_1+X_2)=V(X_1)+V(X_2)-\frac{V(X_1)V(X_2)}{2}. $$ We conjecture that this result holds true for general quantum computing errors and we prove the formula for independent isotropic quantum computing errors.

Saturated set and its reduced case, the set of generic points, constitute two significant types of fractal-like sets in multifractal analysis of dynamical systems. In the context of infinite entropy systems, this paper aims to give some qualitative aspects of saturated sets and the set of generic points in both topological and measure-theoretic perspectives. For systems with specification property, we establish the certain variational principles for saturated sets in terms of Bowen and packing metric mean dimensions, and show the upper capacity metric mean dimension of saturated sets have full metric mean dimension. All results are useful for understanding the topological structures of dynamical systems with infinite topological entropy. As applications, we further exhibit some qualitative aspects of metric mean dimensions of level sets and the set of mean Li-Yorke pairs in infinite entropy systems.

We establish a general convergence theory of the Rayleigh--Ritz method and the refined Rayleigh--Ritz method for computing some simple eigenpair $(\lambda_{*},x_{*})$ of a given analytic regular nonlinear eigenvalue problem (NEP). In terms of the deviation $\varepsilon$ of $x_{*}$ from a given subspace $\mathcal{W}$, we establish a priori convergence results on the Ritz value, the Ritz vector and the refined Ritz vector. The results show that, as $\varepsilon\rightarrow 0$, there exists a Ritz value that unconditionally converges to $\lambda_*$ and the corresponding refined Ritz vector does so too but the Ritz vector converges conditionally and it may fail to converge and even may not be unique. We also present an error bound for the approximate eigenvector in terms of the computable residual norm of a given approximate eigenpair, and give lower and upper bounds for the error of the refined Ritz vector and the Ritz vector as well as for that of the corresponding residual norms. These results nontrivially extend some convergence results on these two methods for the linear eigenvalue problem to the NEP. Examples are constructed to illustrate the main results.

We extend the typical forcing of M. M\"uller and derive conditions on the forcing frame for which generic expansions preserve injective/bijective pigeonhole principle for polynomial-time computable graphs of functions. Applying this machinery, we show that the bounded arithmetic theory $\forall \textsf{T}^1_2(\textsf{PV}(\alpha))$ augmented by the polynomial-time injective pigeonhole principle does not prove the linear ordering, tournament, and dual weak pigeonhole principles.

We present a novel class of projected gradient (PG) methods for minimizing a smooth but not necessarily convex function over a convex compact set. We first provide a novel analysis of the "vanilla" PG method, achieving the best-known iteration complexity for finding an approximate stationary point of the problem. We then develop an "auto-conditioned" projected gradient (AC-PG) variant that achieves the same iteration complexity without requiring the input of the Lipschitz constant of the gradient or any line search procedure. The key idea is to estimate the Lipschitz constant using first-order information gathered from the previous iterations, and to show that the error caused by underestimating the Lipschitz constant can be properly controlled. We then generalize the PG methods to the stochastic setting, by proposing a stochastic projected gradient (SPG) method and a variance-reduced stochastic gradient (VR-SPG) method, achieving new complexity bounds in different oracle settings. We also present auto-conditioned stepsize policies for both stochastic PG methods and establish comparable convergence guarantees.

We give a reframing of Godel's first and second incompleteness theorems that applies even to some undefinable theories of arithmetic. The usual Hilbert-Bernays provability conditions and the diagonal lemma are replaced by a more direct diagonalization argument, from first principles, based in category theory and in a sense analogous to Cantor's original argument. To this end, we categorify the theory G\"odel encodings, which might be of independent interest. In our setup, the G\"odel sentence is computable explicitly by construction even for $\Sigma ^{0} _{2}$ theories (likely extending to $\Sigma ^{0} _{n}$). In an appendix, we study the relationship of our reframed second incompleteness theorem with arguments of Penrose.

The notion of a non-deterministic logical matrix (where connectives are interpreted as multi-functions) extends the traditional semantics for propositional logics based on logical matrices (where connectives are interpreted as functions). This extension allows for finitely characterizing a much wider class of logics, and has proven decisive in a myriad of recent compositionality results. In this paper we show that the added expressivity brought by non-determinism also has its drawbacks, and in particular that the problem of determining whether two given finite non-deterministic matrices are equivalent, in the sense that they induce the same logic, becomes undecidable. We also discuss some workable sufficient conditions and particular cases, namely regarding rexpansion homomorphisms and bridges to calculi.

We investigate diffusion models to solve the Traveling Salesman Problem. Building on the recent DIFUSCO and T2TCO approaches, we propose IDEQ. IDEQ improves the quality of the solutions by leveraging the constrained structure of the state space of the TSP. Another key component of IDEQ consists in replacing the last stages of DIFUSCO curriculum learning by considering a uniform distribution over the Hamiltonian tours whose orbits by the 2-opt operator converge to the optimal solution as the training objective. Our experiments show that IDEQ improves the state of the art for such neural network based techniques on synthetic instances. More importantly, our experiments show that IDEQ performs very well on the instances of the TSPlib, a reference benchmark in the TSP community: it closely matches the performance of the best heuristics, LKH3, being even able to obtain better solutions than LKH3 on 2 instances of the TSPlib defined on 1577 and 3795 cities. IDEQ obtains 0.3% optimality gap on TSP instances made of 500 cities, and 0.5% on TSP instances with 1000 cities. This sets a new SOTA for neural based methods solving the TSP. Moreover, IDEQ exhibits a lower variance and better scales-up with the number of cities with regards to DIFUSCO and T2TCO.

We incorporate strong negation in the theory of computable functionals TCF, a common extension of Plotkin's PCF and G\"{o}del's system $\mathbf{T}$, by defining simultaneously strong negation $A^{\mathbf{N}}$ of a formula $A$ and strong negation $P^{\mathbf{N}}$ of a predicate $P$ in TCF. As a special case of the latter, we get strong negation of an inductive and a coinductive predicate of TCF. We prove appropriate versions of the Ex falso quodlibet and of double negation elimination for strong negation in TCF. We introduce the so-called tight formulas of TCF i.e., formulas implied by the weak negation of their strong negation, and the relative tight formulas. We present various case-studies and examples, which reveal the naturality of our Definition of strong negation in TCF and justify the use of TCF as a formal system for a large part of Bishop-style constructive mathematics.

We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).

北京阿比特科技有限公司