With the increasing importance of data and artificial intelligence, organizations strive to become more data-driven. However, current data architectures are not necessarily designed to keep up with the scale and scope of data and analytics use cases. In fact, existing architectures often fail to deliver the promised value associated with them. Data mesh is a socio-technical, decentralized, distributed concept for enterprise data management. As the concept of data mesh is still novel, it lacks empirical insights from the field. Specifically, an understanding of the motivational factors for introducing data mesh, the associated challenges, implementation strategies, its business impact, and potential archetypes is missing. To address this gap, we conduct 15 semi-structured interviews with industry experts. Our results show, among other insights, that organizations have difficulties with the transition toward federated governance associated with the data mesh concept, the shift of responsibility for the development, provision, and maintenance of data products, and the comprehension of the overall concept. In our work, we derive multiple implementation strategies and suggest organizations introduce a cross-domain steering unit, observe the data product usage, create quick wins in the early phases, and favor small dedicated teams that prioritize data products. While we acknowledge that organizations need to apply implementation strategies according to their individual needs, we also deduct two archetypes that provide suggestions in more detail. Our findings synthesize insights from industry experts and provide researchers and professionals with preliminary guidelines for the successful adoption of data mesh.
The Italian Digital Media Observatory (IDMO) project, part of a European initiative, focuses on countering disinformation and fake news. This report outlines contributions from Rai-CRITS to the project, including: (i) the creation of novel datasets for testing technologies (ii) development of an automatic model for categorizing Pagella Politica verdicts to facilitate broader analysis (iii) creation of an automatic model for recognizing textual entailment with exceptional accuracy on the FEVER dataset (iv) assessment using GPT-4 to detecting content treatment style (v) a game to raise awareness about fake news at national events.
3D object detection from images, one of the fundamental and challenging problems in autonomous driving, has received increasing attention from both industry and academia in recent years. Benefiting from the rapid development of deep learning technologies, image-based 3D detection has achieved remarkable progress. Particularly, more than 200 works have studied this problem from 2015 to 2021, encompassing a broad spectrum of theories, algorithms, and applications. However, to date no recent survey exists to collect and organize this knowledge. In this paper, we fill this gap in the literature and provide the first comprehensive survey of this novel and continuously growing research field, summarizing the most commonly used pipelines for image-based 3D detection and deeply analyzing each of their components. Additionally, we also propose two new taxonomies to organize the state-of-the-art methods into different categories, with the intent of providing a more systematic review of existing methods and facilitating fair comparisons with future works. In retrospect of what has been achieved so far, we also analyze the current challenges in the field and discuss future directions for image-based 3D detection research.
Modern generative models exhibit unprecedented capabilities to generate extremely realistic data. However, given the inherent compositionality of the real world, reliable use of these models in practical applications requires that they exhibit the capability to compose a novel set of concepts to generate outputs not seen in the training data set. Prior work demonstrates that recent diffusion models do exhibit intriguing compositional generalization abilities, but also fail unpredictably. Motivated by this, we perform a controlled study for understanding compositional generalization in conditional diffusion models in a synthetic setting, varying different attributes of the training data and measuring the model's ability to generate samples out-of-distribution. Our results show: (i) the order in which the ability to generate samples from a concept and compose them emerges is governed by the structure of the underlying data-generating process; (ii) performance on compositional tasks exhibits a sudden "emergence" due to multiplicative reliance on the performance of constituent tasks, partially explaining emergent phenomena seen in generative models; and (iii) composing concepts with lower frequency in the training data to generate out-of-distribution samples requires considerably more optimization steps compared to generating in-distribution samples. Overall, our study lays a foundation for understanding capabilities and compositionality in generative models from a data-centric perspective.
Recent research has shown that adversarial patches can manipulate outputs from object detection models. However, the conspicuous patterns on these patches may draw more attention and raise suspicions among humans. Moreover, existing works have primarily focused on the attack performance of individual models and have neglected the generation of adversarial patches for ensemble attacks on multiple object detection models. To tackle these concerns, we propose a novel approach referred to as the More Vivid Patch (MVPatch), which aims to improve the transferability and stealthiness of adversarial patches while considering the limitations observed in prior paradigms, such as easy identification and poor transferability. Our approach incorporates an attack algorithm that decreases object confidence scores of multiple object detectors by using the ensemble attack loss function, thereby enhancing the transferability of adversarial patches. Additionally, we propose a lightweight visual similarity measurement algorithm realized by the Compared Specified Image Similarity (CSS) loss function, which allows for the generation of natural and stealthy adversarial patches without the reliance on additional generative models. Extensive experiments demonstrate that the proposed MVPatch algorithm achieves superior attack transferability compared to similar algorithms in both digital and physical domains, while also exhibiting a more natural appearance. These findings emphasize the remarkable stealthiness and transferability of the proposed MVPatch attack algorithm.
Online learning and MOOCs have become increasingly popular in recent years, and the trend will continue, given the technology boom. There is a dire need to observe learners' behavior in these online courses, similar to what instructors do in a face-to-face classroom. Learners' strategies and activities become crucial to understanding their behavior. One major challenge in online courses is predicting and preventing dropout behavior. While several studies have tried to perform such analysis, there is still a shortage of studies that employ different data streams to understand and predict the drop rates. Moreover, studies rarely use a fully online team-based collaborative environment as their context. Thus, the current study employs an online longitudinal problem-based learning (PBL) collaborative robotics competition as the testbed. Through methodological triangulation, the study aims to predict dropout behavior via the contributions of Discourse discussion forum 'activities' of participating teams, along with a self-reported Online Learning Strategies Questionnaire (OSLQ). The study also uses Qualitative interviews to enhance the ground truth and results. The OSLQ data is collected from more than 4000 participants. Furthermore, the study seeks to establish the reliability of OSLQ to advance research within online environments. Various Machine Learning algorithms are applied to analyze the data. The findings demonstrate the reliability of OSLQ with our substantial sample size and reveal promising results for predicting the dropout rate in online competition.
Product bundling has evolved into a crucial marketing strategy in e-commerce. However, current studies are limited to generating (1) fixed-size or single bundles, and most importantly, (2) bundles that do not reflect consistent user intents, thus being less intelligible or useful to users. This paper explores two interrelated tasks, i.e., personalized bundle generation and the underlying intent inference based on users' interactions in a session, leveraging the logical reasoning capability of large language models. We introduce a dynamic in-context learning paradigm, which enables ChatGPT to seek tailored and dynamic lessons from closely related sessions as demonstrations while performing tasks in the target session. Specifically, it first harnesses retrieval augmented generation to identify nearest neighbor sessions for each target session. Then, proper prompts are designed to guide ChatGPT to perform the two tasks on neighbor sessions. To enhance reliability and mitigate the hallucination issue, we develop (1) a self-correction strategy to foster mutual improvement in both tasks without supervision signals; and (2) an auto-feedback mechanism to recurrently offer dynamic supervision based on the distinct mistakes made by ChatGPT on various neighbor sessions. Thus, the target session can receive customized and dynamic lessons for improved performance by observing the demonstrations of its neighbor sessions. Finally, experimental results on three real-world datasets verify the effectiveness of our methods on both tasks. Additionally, the inferred intents can prove beneficial for other intriguing downstream tasks, such as crafting appealing bundle names.
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.