亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel sequential Monte Carlo approach to online smoothing of additive functionals in a very general class of path-space models. Hitherto, the solutions proposed in the literature suffer from either long-term numerical instability due to particle-path degeneracy or, in the case that degeneracy is remedied by particle approximation of the so-called backward kernel, high computational demands. In order to balance optimally computational speed against numerical stability, we propose to furnish a (fast) naive particle smoother, propagating recursively a sample of particles and associated smoothing statistics, with an adaptive backward-sampling-based updating rule which allows the number of (costly) backward samples to be kept at a minimum. This yields a new, function-specific additive smoothing algorithm, AdaSmooth, which is computationally fast, numerically stable and easy to implement. The algorithm is provided with rigorous theoretical results guaranteeing its consistency, asymptotic normality and long-term stability as well as numerical results demonstrating empirically the clear superiority of AdaSmooth to existing algorithms.

相關內容

An Orthogonal Least Squares (OLS) based feature selection method is proposed for both binomial and multinomial classification. The novel Squared Orthogonal Correlation Coefficient (SOCC) is defined based on Error Reduction Ratio (ERR) in OLS and used as the feature ranking criterion. The equivalence between the canonical correlation coefficient, Fisher's criterion, and the sum of the SOCCs is revealed, which unveils the statistical implication of ERR in OLS for the first time. It is also shown that the OLS based feature selection method has speed advantages when applied for greedy search. The proposed method is comprehensively compared with the mutual information based feature selection methods and the embedded methods using both synthetic and real world datasets. The results show that the proposed method is always in the top 5 among the 12 candidate methods. Besides, the proposed method can be directly applied to continuous features without discretisation, which is another significant advantage over mutual information based methods.

This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the most informative principal submatrix of a prespecified size from a covariance matrix. MESP has been widely applied to many areas, including healthcare, power system, manufacturing and data science. By investigating its Lagrangian dual and primal characterization, we derive a novel convex integer program for MESP and show that its continuous relaxation yields a near-optimal solution. The results motivate us to study an efficient sampling algorithm and develop its approximation bound for MESP, which improves the best-known bound in literature. We then provide an efficient deterministic implementation of the sampling algorithm with the same approximation bound. By developing new mathematical tools for the singular matrices and analyzing the Lagrangian dual of the proposed convex integer program, we investigate the widely-used local search algorithm and prove its first-known approximation bound for MESP. The proof techniques further inspire us with an efficient implementation of the local search algorithm. Our numerical experiments demonstrate that these approximation algorithms can efficiently solve medium-sized and large-scale instances to near-optimality. Our proposed algorithms are coded and released as open-source software. Finally, we extend the analyses to the A-Optimal MESP (A-MESP), where the objective is to minimize the trace of the inverse of the selected principal submatrix.

We discuss estimating the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $\mathbb{P}(\sum_{i=1}^{N}{X_i} \leq \gamma)$, via importance sampling (IS). We are particularly interested in the rare event regime when $N$ is large and/or $\gamma$ is small. The exponential twisting is a popular technique for similar problems that, in most cases, compares favorably to other estimators. However, it has some limitations: i) it assumes the knowledge of the moment generating function of $X_i$ and ii) sampling under the new IS PDF is not straightforward and might be expensive. The aim of this work is to propose an alternative IS PDF that approximately yields, for certain classes of distributions and in the rare event regime, at least the same performance as the exponential twisting technique and, at the same time, does not introduce serious limitations. The first class includes distributions whose probability density functions (PDFs) are asymptotically equivalent, as $x \rightarrow 0$, to $bx^{p}$, for $p>-1$ and $b>0$. For this class of distributions, the Gamma IS PDF with appropriately chosen parameters retrieves approximately, in the rare event regime corresponding to small values of $\gamma$ and/or large values of $N$, the same performance of the estimator based on the use of the exponential twisting technique. In the second class, we consider the Log-normal setting, whose PDF at zero vanishes faster than any polynomial, and we show numerically that a Gamma IS PDF with optimized parameters clearly outperforms the exponential twisting IS PDF. Numerical experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large $N$ and/or small $\gamma$.

We study decentralized non-convex finite-sum minimization problems described over a network of nodes, where each node possesses a local batch of data samples. In this context, we analyze a single-timescale randomized incremental gradient method, called GT-SAGA. GT-SAGA is computationally efficient as it evaluates one component gradient per node per iteration and achieves provably fast and robust performance by leveraging node-level variance reduction and network-level gradient tracking. For general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA to a first-order stationary point and further describe regimes of practical significance where it outperforms the existing approaches and achieves a network topology-independent iteration complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical interest where the performance is network topology-independent and improves upon the existing methods. Numerical experiments are included to highlight the main convergence aspects of GT-SAGA in non-convex settings.

We address the non-convex optimisation problem of finding a sparse matrix on the Stiefel manifold (matrices with mutually orthogonal columns of unit length) that maximises (or minimises) a quadratic objective function. Optimisation problems on the Stiefel manifold occur for example in spectral relaxations of various combinatorial problems, such as graph matching, clustering, or permutation synchronisation. Although sparsity is a desirable property in such settings, it is mostly neglected in spectral formulations since existing solvers, e.g. based on eigenvalue decomposition, are unable to account for sparsity while at the same time maintaining global optimality guarantees. We fill this gap and propose a simple yet effective sparsity-promoting modification of the Orthogonal Iteration algorithm for finding the dominant eigenspace of a matrix. By doing so, we can guarantee that our method finds a Stiefel matrix that is globally optimal with respect to the quadratic objective function, while in addition being sparse. As a motivating application we consider the task of permutation synchronisation, which can be understood as a constrained clustering problem that has particular relevance for matching multiple images or 3D shapes in computer vision, computer graphics, and beyond. We demonstrate that the proposed approach outperforms previous methods in this domain.

We consider the least-squares finite element method (lsfem) for systems of nonlinear ordinary differential equations and establish an optimal error estimate for this method when piecewise linear elements are used. The main assumptions are that the vector field is sufficiently smooth and that the local Lipschitz constant, as well as the operator norm of the Jacobian matrix associated with the nonlinearity, are sufficiently small when restricted to a suitable neighborhood of the true solution for the considered initial value problem. This theoretic optimality is further illustrated numerically, along with evidence of possible extension to higher-order basis elements. Examples are also presented to show the advantages of lsfem compared with finite difference methods in various scenarios. Suitable modifications for adaptive time-stepping are discussed as well.

This paper presents a fast algorithm to solve a spectral estimation problem for two-dimensional random fields. The latter is formulated as a convex optimization problem with the Itakura-Saito pseudodistance as the objective function subject to the constraints of moment equations. We exploit the structure of the Hessian of the dual objective function in order to make possible a fast Newton solver. Then we incorporate the Newton solver to a predictor-corrector numerical continuation method which is able to produce a parametrized family of solutions to the moment equations. We have performed two sets of numerical simulations to test our algorithm and spectral estimator. The simulations on the frequency estimation problem shows that our spectral estimator outperforms the classical windowed periodograms in the case of two hidden frequencies and has a higher resolution. The other set of simulations on system identification indicates that the numerical continuation method is more robust than Newton's method alone in ill-conditioned instances.

Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.

北京阿比特科技有限公司