Recent advances in Large Language Models (LLMs) have been changing the paradigm of Recommender Systems (RS). However, when items in the recommendation scenarios contain rich textual information, such as product descriptions in online shopping or news headlines on social media, LLMs require longer texts to comprehensively depict the historical user behavior sequence. This poses significant challenges to LLM-based recommenders, such as over-length limitations, extensive time and space overheads, and suboptimal model performance. To this end, in this paper, we design a novel framework for harnessing Large Language Models for Text-Rich Sequential Recommendation (LLM-TRSR). Specifically, we first propose to segment the user historical behaviors and subsequently employ an LLM-based summarizer for summarizing these user behavior blocks. Particularly, drawing inspiration from the successful application of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) models in user modeling, we introduce two unique summarization techniques in this paper, respectively hierarchical summarization and recurrent summarization. Then, we construct a prompt text encompassing the user preference summary, recent user interactions, and candidate item information into an LLM-based recommender, which is subsequently fine-tuned using Supervised Fine-Tuning (SFT) techniques to yield our final recommendation model. We also use Low-Rank Adaptation (LoRA) for Parameter-Efficient Fine-Tuning (PEFT). We conduct experiments on two public datasets, and the results clearly demonstrate the effectiveness of our approach.
Vision Transformers (ViTs) have achieved state-of-the-art performance for various vision tasks. One reason behind the success lies in their ability to provide plausible innate explanations for the behavior of neural architectures. However, ViTs suffer from issues with explanation faithfulness, as their focal points are fragile to adversarial attacks and can be easily changed with even slight perturbations on the input image. In this paper, we propose a rigorous approach to mitigate these issues by introducing Faithful ViTs (FViTs). Briefly speaking, an FViT should have the following two properties: (1) The top-$k$ indices of its self-attention vector should remain mostly unchanged under input perturbation, indicating stable explanations; (2) The prediction distribution should be robust to perturbations. To achieve this, we propose a new method called Denoised Diffusion Smoothing (DDS), which adopts randomized smoothing and diffusion-based denoising. We theoretically prove that processing ViTs directly with DDS can turn them into FViTs. We also show that Gaussian noise is nearly optimal for both $\ell_2$ and $\ell_\infty$-norm cases. Finally, we demonstrate the effectiveness of our approach through comprehensive experiments and evaluations. Results show that FViTs are more robust against adversarial attacks while maintaining the explainability of attention, indicating higher faithfulness.
We present a top-down lower-bound method for depth-$4$ boolean circuits. In particular, we give a new proof of the well-known result that the parity function requires depth-$4$ circuits of size exponential in $n^{1/3}$. Our proof is an application of robust sunflowers and block unpredictability.
The commonly used caching policies, such as LRU or LFU, exhibit optimal performance only for specific traffic patterns. Even advanced Machine Learning-based methods, which detect patterns in historical request data, struggle when future requests deviate from past trends. Recently, a new class of policies has emerged that makes no assumptions about the request arrival process. These algorithms solve an online optimization problem, enabling continuous adaptation to the context. They offer theoretical guarantees on the regret metric, which is the gap between the gain of the online policy and the gain of the optimal static cache allocation in hindsight. Nevertheless, the high computational complexity of these solutions hinders their practical adoption. In this study, we introduce a groundbreaking gradient-based online caching policy, the first to achieve logarithmic computational complexity relative to catalog size along with regret guarantees. This means our algorithm can efficiently handle large-scale data while minimizing the performance gap between real-time decisions and optimal hindsight choices. As requests arrive, our policy dynamically adjusts the probabilities of including items in the cache, which drive cache update decisions. Our algorithm's streamlined complexity is a key advantage, enabling its application to real-world traces featuring millions of requests and items. This is a significant achievement, as traces of this scale have been out of reach for existing policies with regret guarantees. To the best of our knowledge, our experimental results show for the first time that the regret guarantees of gradient-based caching policies bring significant benefits in scenarios of practical interest.
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, yet they remain vulnerable to adversarial attacks, notably the well-documented \textit{jailbreak} attack. Recently, the Greedy Coordinate Gradient (GCG) attack has demonstrated efficacy in exploiting this vulnerability by optimizing adversarial prompts through a combination of gradient heuristics and greedy search. However, the efficiency of this attack has become a bottleneck in the attacking process. To mitigate this limitation, in this paper we rethink the generation of adversarial prompts through an optimization lens, aiming to stabilize the optimization process and harness more heuristic insights from previous iterations. Specifically, we introduce the \textbf{M}omentum \textbf{A}ccelerated G\textbf{C}G (\textbf{MAC}) attack, which incorporates a momentum term into the gradient heuristic. Experimental results showcase the notable enhancement achieved by MAP in gradient-based attacks on aligned language models. Our code is available at //github.com/weizeming/momentum-attack-llm.
We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
The Virtual Machine (VM)-based Trusted-Execution-Environment (TEE) technology, like AMD Secure-Encrypted-Virtualization (SEV), enables the establishment of Confidential VMs (CVMs) to protect data privacy. But CVM lacks ways to provide the trust proof of its running state, degrading the user confidence of using CVM. The technology of virtual Trusted Platform Module (vTPM) can be used to generate trust proof for CVM. However, the existing vTPM-based approaches have the weaknesses like lack of a well-defined root-of-trust, lack of vTPM protection, and lack of vTPM's trust proof. These weaknesses prevent the generation of the trust proof of the CVM. This paper proposes an approach to generate the trust proof for AMD SEV-based CVM so as to ensure its security by using a secure vTPM to construct Trusted Complete Chain for the CVM (T3CVM). T3CVM consists of three components: 1) TR-Manager, as the well-defined root-of-trust, helps to build complete trust chains for CVMs; 2) CN-TPMCVM, a special CVM provides secure vTPMs; 3) CN-CDriver, an enhanced TPM driver. Our approach overcomes the weaknesses of existing approaches and enables trusted computing-based applications to run seamlessly in the trusted CVM. We perform a formal security analysis of T3CVM, and implement a prototype system to evaluate its performance.
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.