亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we study consensus-based optimization (CBO), which is a multi-agent metaheuristic derivative-free optimization method that can globally minimize nonconvex nonsmooth functions and is amenable to theoretical analysis. Based on an experimentally supported intuition that, on average, CBO performs a gradient descent of the squared Euclidean distance to the global minimizer, we devise a novel technique for proving the convergence to the global minimizer in mean-field law for a rich class of objective functions. The result unveils internal mechanisms of CBO that are responsible for the success of the method. In particular, we prove that CBO performs a convexification of a large class of optimization problems as the number of optimizing agents goes to infinity. Furthermore, we improve prior analyses by requiring mild assumptions about the initialization of the method and by covering objectives that are merely locally Lipschitz continuous. As a core component of this analysis, we establish a quantitative nonasymptotic Laplace principle, which may be of independent interest. From the result of CBO convergence in mean-field law, it becomes apparent that the hardness of any global optimization problem is necessarily encoded in the rate of the mean-field approximation, for which we provide a novel probabilistic quantitative estimate. The combination of these results allows to obtain probabilistic global convergence guarantees of the numerical CBO method.

相關內容

The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estimation problems. In this paper, we present ROME (RObust Multi-modal Estimator), a non-parametric approach for density estimation which addresses the challenge of estimating multi-modal, non-normal, and highly correlated distributions. ROME utilizes clustering to segment a multi-modal set of samples into multiple uni-modal ones and then combines simple KDE estimates obtained for individual clusters in a single multi-modal estimate. We compared our approach to state-of-the-art methods for density estimation as well as ablations of ROME, showing that it not only outperforms established methods but is also more robust to a variety of distributions. Our results demonstrate that ROME can overcome the issues of over-fitting and over-smoothing exhibited by other estimators.

In this paper, we study linear-function correcting codes, a class of codes designed to protect linear function evaluations of a message against errors. The work "Function-Correcting Codes" by Lenz et al. 2023 provides a graphical representation for the problem of constructing function-correcting codes. We use this graph to get a lower bound the on redundancy required for function correction. By considering the function to be a bijection, such an approach also provides a lower bound on the redundancy required for classical systematic error correcting codes. For linear-function correction, we characterise the spectrum of the adjacency matrix of this graph, which gives rise to lower bounds on redundancy. The work "Function-Correcting Codes" gives an equivalence between function-correcting codes and irregular-distance codes. We identify a structure imposed by linearity on the distance requirement of the equivalent irregular-distance code which provides a simplified Plotkin-like bound. We propose a version of the sphere packing bound for linear-function correcting codes. We identify a class of linear functions for which an upper bound proposed by Lenz et al., is tight. We also identify a class of functions for which coset-wise coding is equivalent to a lower dimensional classical error correction problem.

In real-world scenarios, objects often require repositioning and reorientation before they can be grasped, a process known as pre-grasp manipulation. Learning universal dexterous functional pre-grasp manipulation requires precise control over the relative position, orientation, and contact between the hand and object while generalizing to diverse dynamic scenarios with varying objects and goal poses. To address this challenge, we propose a teacher-student learning approach that utilizes a novel mutual reward, incentivizing agents to optimize three key criteria jointly. Additionally, we introduce a pipeline that employs a mixture-of-experts strategy to learn diverse manipulation policies, followed by a diffusion policy to capture complex action distributions from these experts. Our method achieves a success rate of 72.6\% across more than 30 object categories by leveraging extrinsic dexterity and adjusting from feedback.

In this paper, we study the continual learning problem of single-task offline reinforcement learning. In the past, continual reinforcement learning usually only dealt with multitasking, that is, learning multiple related or unrelated tasks in a row, but once each learned task was learned, it was not relearned, but only used in subsequent processes. However, offline reinforcement learning tasks require the continuously learning of multiple different datasets for the same task. Existing algorithms will try their best to achieve the best results in each offline dataset they have learned and the skills of the network will overwrite the high-quality datasets that have been learned after learning the subsequent poor datasets. On the other hand, if too much emphasis is placed on stability, the network will learn the subsequent better dataset after learning the poor offline dataset, and the problem of insufficient plasticity and non-learning will occur. How to design a strategy that can always preserve the best performance for each state in the data that has been learned is a new challenge and the focus of this study. Therefore, this study proposes a new algorithm, called Ensemble Offline Reinforcement Learning Based on Experience Replay, which introduces multiple value networks to learn the same dataset and judge whether the strategy has been learned by the discrete degree of the value network, to improve the performance of the network in single-task offline reinforcement learning.

Edge computing allows artificial intelligence and machine learning models to be deployed on edge devices, where they can learn from local data and collaborate to form a global model. Federated learning (FL) is a distributed machine learning technique that facilitates this process while preserving data privacy. However, FL also faces challenges such as high computational and communication costs regarding resource-constrained devices, and poor generalization performance due to the heterogeneity of data across edge clients and the presence of out-of-distribution data. In this paper, we propose the Gradient-Congruity Guided Federated Sparse Training (FedSGC), a novel method that integrates dynamic sparse training and gradient congruity inspection into federated learning framework to address these issues. Our method leverages the idea that the neurons, in which the associated gradients with conflicting directions with respect to the global model contain irrelevant or less generalized information for other clients, and could be pruned during the sparse training process. Conversely, the neurons where the associated gradients with consistent directions could be grown in a higher priority. In this way, FedSGC can greatly reduce the local computation and communication overheads while, at the same time, enhancing the generalization abilities of FL. We evaluate our method on challenging non-i.i.d settings and show that it achieves competitive accuracy with state-of-the-art FL methods across various scenarios while minimizing computation and communication costs.

In this paper, we introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion, which primarily focuses on protecting the denoising phase of the diffusion process. HE-Diffusion is a tailored encryption framework specifically designed to align with the unique architecture of stable diffusion, ensuring both privacy and functionality. To address the inherent computational challenges, we propose a novel min-distortion method that enables efficient partial image encryption, significantly reducing the overhead without compromising the model's output quality. Furthermore, we adopt a sparse tensor representation to expedite computational operations, enhancing the overall efficiency of the privacy-preserving diffusion process. We successfully implement HE-based privacy-preserving stable diffusion inference. The experimental results show that HE-Diffusion achieves 500 times speedup compared with the baseline method, and reduces time cost of the homomorphically encrypted inference to the minute level. Both the performance and accuracy of the HE-Diffusion are on par with the plaintext counterpart. Our approach marks a significant step towards integrating advanced cryptographic techniques with state-of-the-art generative models, paving the way for privacy-preserving and efficient image generation in critical applications.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司