We study stability properties of the expected utility function in Bayesian optimal experimental design. We provide a framework for this problem in a non-parametric setting and prove a convergence rate of the expected utility with respect to a likelihood perturbation. This rate is uniform over the design space and its sharpness in the general setting is demonstrated by proving a lower bound in a special case. To make the problem more concrete we proceed by considering non-linear Bayesian inverse problems with Gaussian likelihood and prove that the assumptions set out for the general case are satisfied and regain the stability of the expected utility with respect to perturbations to the observation map. Theoretical convergence rates are demonstrated numerically in three different examples.
This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.
Rational best approximations (in a Chebyshev sense) to real functions are characterized by an equioscillating approximation error. Similar results do not hold true for rational best approximations to complex functions in general. In the present work, we consider unitary rational approximations to the exponential function on the imaginary axis, which map the imaginary axis to the unit circle. In the class of unitary rational functions, best approximations are shown to exist, to be uniquely characterized by equioscillation of a phase error, and to possess a super-linear convergence rate. Furthermore, the best approximations have full degree (i.e., non-degenerate), achieve their maximum approximation error at points of equioscillation, and interpolate at intermediate points. Asymptotic properties of poles, interpolation nodes, and equioscillation points of these approximants are studied. Three algorithms, which are found very effective to compute unitary rational approximations including candidates for best approximations, are sketched briefly. Some consequences to numerical time-integration are discussed. In particular, time propagators based on unitary best approximants are unitary, symmetric and A-stable.
The ensemble Kalman inversion (EKI), a recently introduced optimisation method for solving inverse problems, is widely employed for the efficient and derivative-free estimation of unknown parameters. Specifically in cases involving ill-posed inverse problems and high-dimensional parameter spaces, the scheme has shown promising success. However, in its general form, the EKI does not take constraints into account, which are essential and often stem from physical limitations or specific requirements. Based on a log-barrier approach, we suggest adapting the continuous-time formulation of EKI to incorporate convex inequality constraints. We underpin this adaptation with a theoretical analysis that provides lower and upper bounds on the ensemble collapse, as well as convergence to the constraint optimum for general nonlinear forward models. Finally, we showcase our results through two examples involving partial differential equations (PDEs).
The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.
Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), achieving state-of-the-art performance. However, deep models generally suffer from spurious correlations between input features and output labels, which hurts the robustness and generalization capability by a large margin. In this paper, we propose to reduce spurious correlations for ABSA, via a novel Contrastive Variational Information Bottleneck framework (called CVIB). The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization. Code and data to reproduce the results in this paper is available at: //github.com/shesshan/CVIB.
We consider unregularized robust M-estimators for linear models under Gaussian design and heavy-tailed noise, in the proportional asymptotics regime where the sample size n and the number of features p are both increasing such that $p/n \to \gamma\in (0,1)$. An estimator of the out-of-sample error of a robust M-estimator is analysed and proved to be consistent for a large family of loss functions that includes the Huber loss. As an application of this result, we propose an adaptive tuning procedure of the scale parameter $\lambda>0$ of a given loss function $\rho$: choosing$\hat \lambda$ in a given interval $I$ that minimizes the out-of-sample error estimate of the M-estimator constructed with loss $\rho_\lambda(\cdot) = \lambda^2 \rho(\cdot/\lambda)$ leads to the optimal out-of-sample error over $I$. The proof relies on a smoothing argument: the unregularized M-estimation objective function is perturbed, or smoothed, with a Ridge penalty that vanishes as $n\to+\infty$, and show that the unregularized M-estimator of interest inherits properties of its smoothed version.
The aim of this article is to investigate the well-posedness, stability and convergence of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these homogeneous regions the solution to the Maxwell's equations also solves the wave equation which makes calculations very efficient. In this way our problem can be considered as a coupling problem for which we derive stability and convergence analysis. A number of numerical examples validate theoretical convergence rates of the proposed stabilized explicit finite element scheme.
Empirical Bayes provides a powerful approach to learning and adapting to latent structure in data. Theory and algorithms for empirical Bayes have a rich literature for sequence models, but are less understood in settings where latent variables and data interact through more complex designs. In this work, we study empirical Bayes estimation of an i.i.d. prior in Bayesian linear models, via the nonparametric maximum likelihood estimator (NPMLE). We introduce and study a system of gradient flow equations for optimizing the marginal log-likelihood, jointly over the prior and posterior measures in its Gibbs variational representation using a smoothed reparametrization of the regression coefficients. A diffusion-based implementation yields a Langevin dynamics MCEM algorithm, where the prior law evolves continuously over time to optimize a sequence-model log-likelihood defined by the coordinates of the current Langevin iterate. We show consistency of the NPMLE as $n, p \rightarrow \infty$ under mild conditions, including settings of random sub-Gaussian designs when $n \asymp p$. In high noise, we prove a uniform log-Sobolev inequality for the mixing of Langevin dynamics, for possibly misspecified priors and non-log-concave posteriors. We then establish polynomial-time convergence of the joint gradient flow to a near-NPMLE if the marginal negative log-likelihood is convex in a sub-level set of the initialization.
Coordinate exchange (CEXCH) is a popular algorithm for generating exact optimal experimental designs. The authors of CEXCH advocated for a highly greedy implementation - one that exchanges and optimizes single element coordinates of the design matrix. We revisit the effect of greediness on CEXCHs efficacy for generating highly efficient designs. We implement the single-element CEXCH (most greedy), a design-row (medium greedy) optimization exchange, and particle swarm optimization (PSO; least greedy) on 21 exact response surface design scenarios, under the $D$- and $I-$criterion, which have well-known optimal designs that have been reproduced by several researchers. We found essentially no difference in performance of the most greedy CEXCH and the medium greedy CEXCH. PSO did exhibit better efficacy for generating $D$-optimal designs, and for most $I$-optimal designs than CEXCH, but not to a strong degree under our parametrization. This work suggests that further investigation of the greediness dimension and its effect on CEXCH efficacy on a wider suite of models and criterion is warranted.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.