亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The anticipation of human behavior is a crucial capability for robots to interact with humans safely and efficiently. We employ a smart edge sensor network to provide global observations along with future predictions and goal information to integrate anticipatory behavior for the control of a mobile manipulation robot. We present approaches to anticipate human behavior in the context of safe navigation and a collaborative mobile manipulation task. First, we anticipate human motion by employing projections of human trajectories from smart edge sensor network observations into the planning map of a mobile robot. Second, we anticipate human intentions in a collaborative furniture-carrying task to achieve a given goal. Our experiments indicate that anticipating human behavior allows for safer navigation and more efficient collaboration. Finally, we showcase an integrated system that anticipates human behavior and collaborates with a human to achieve a target room layout, including the placement of tables and chairs.

相關內容

機器(qi)(qi)人(ren)(英語:Robot)包括一切模(mo)擬人(ren)類行(xing)為或思想(xiang)與模(mo)擬其他(ta)生物的機械(如機器(qi)(qi)狗,機器(qi)(qi)貓等)。狹義上對機器(qi)(qi)人(ren)的定義還有很多分(fen)類法(fa)及爭議,有些電腦程序(xu)甚至(zhi)也被(bei)稱(cheng)為機器(qi)(qi)人(ren)。在當(dang)代工(gong)業中(zhong),機器(qi)(qi)人(ren)指(zhi)能自動(dong)運行(xing)任務的人(ren)造機器(qi)(qi)設備(bei),用以取代或協助人(ren)類工(gong)作(zuo),一般會是(shi)機電設備(bei),由計算機程序(xu)或是(shi)電子電路控制。

知識薈萃

精品入門和(he)進階教程、論文和(he)代碼(ma)整理等

更多

查(cha)看相關VIP內容、論文、資訊等

Monitored Natural Attenuation (MNA) is gaining prominence as an effective method for managing soil and groundwater contamination due to its cost-efficiency and minimal environmental disruption. Despite its benefits, MNA necessitates extensive groundwater monitoring to ensure that contaminant levels decrease to meet safety standards. This study expands the capabilities of PyLEnM, a Python package designed for long-term environmental monitoring, by incorporating new algorithms to enhance its predictive and analytical functionalities. We introduce methods to estimate the timeframe required for contaminants like Sr-90 and I-129 to reach regulatory safety standards using linear regression and to forecast future contaminant levels with the Bidirectional Long Short-Term Memory (Bi-LSTM) networks. Additionally, Random Forest regression is employed to identify factors influencing the time to reach safety standards. Our methods are illustrated using data from the Savannah River Site (SRS) F-Area, where preliminary findings reveal a notable downward trend in contaminant levels, with variability linked to initial concentrations and groundwater flow dynamics. The Bi-LSTM model effectively predicts contaminant concentrations for the next four years, demonstrating the potential of advanced time series analysis to improve MNA strategies and reduce reliance on manual groundwater sampling. The code, along with its usage instructions, validation, and requirements, is available at: //github.com/csplevuanh/pylenm_extension.

Despite advances in deep learning for estimating brain age from structural MRI data, incorporating functional MRI data is challenging due to its complex structure and the noisy nature of functional connectivity measurements. To address this, we present the Multitask Adversarial Variational Autoencoder, a custom deep learning framework designed to improve brain age predictions through multimodal MRI data integration. This model separates latent variables into generic and unique codes, isolating shared and modality-specific features. By integrating multitask learning with sex classification as an additional task, the model captures sex-specific aging patterns. Evaluated on the OpenBHB dataset, a large multisite brain MRI collection, the model achieves a mean absolute error of 2.77 years, outperforming traditional methods. This success positions M-AVAE as a powerful tool for metaverse-based healthcare applications in brain age estimation.

Neuron importance assessment is crucial for understanding the inner workings of artificial neural networks (ANNs) and improving their interpretability and efficiency. This paper introduces a novel approach to neuron significance assessment inspired by frequency tagging, a technique from neuroscience. By applying sinusoidal contrast modulation to image inputs and analyzing resulting neuron activations, this method enables fine-grained analysis of a network's decision-making processes. Experiments conducted with a convolutional neural network for image classification reveal notable harmonics and intermodulations in neuron-specific responses under part-based frequency tagging. These findings suggest that ANNs exhibit behavior akin to biological brains in tuning to flickering frequencies, thereby opening avenues for neuron/filter importance assessment through frequency tagging. The proposed method holds promise for applications in network pruning, and model interpretability, contributing to the advancement of explainable artificial intelligence and addressing the lack of transparency in neural networks. Future research directions include developing novel loss functions to encourage biologically plausible behavior in ANNs.

Robot systems capable of executing tasks based on language instructions have been actively researched. It is challenging to convey uncertain information that can only be determined on-site with a single language instruction to the robot. In this study, we propose a system that includes ambiguous parts as template variables in language instructions to communicate the information to be collected and the options to be presented to the robot for predictable uncertain events. This study implements prompt generation for each robot action function based on template variables to collect information, and a feedback system for presenting and selecting options based on template variables for user-to-robot communication. The effectiveness of the proposed system was demonstrated through its application to real-life support tasks performed by the robot.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司