Using probabilistic methods, we obtain grid-drawings of graphs without crossings with low volume and small aspect ratio. We show that every $D$-degenerate graph on $n$ vertices can be drawn in $[m]^3$ where $m = O(D^{5/3} n^{1/3}\log^{4/3}n)$. In particular, every graph of bounded maximum degree can be drawn in a grid with volume $O(n \log^{4}n)$.
Probabilistic graphical models are widely used to model complex systems under uncertainty. Traditionally, Gaussian directed graphical models are applied for analysis of large networks with continuous variables as they can provide conditional and marginal distributions in closed form simplifying the inferential task. The Gaussianity and linearity assumptions are often adequate, yet can lead to poor performance when dealing with some practical applications. In this paper, we model each variable in graph G as a polynomial regression of its parents to capture complex relationships between individual variables and with a utility function of polynomial form. We develop a message-passing algorithm to propagate information throughout the network solely using moments which enables the expected utility scores to be calculated exactly. Our propagation method scales up well and enables to perform inference in terms of a finite number of expectations. We illustrate how the proposed methodology works with examples and in an application to decision problems in energy planning and for real-time clinical decision support.
We present a new technique for visualizing high-dimensional data called cluster MDS (cl-MDS), which addresses a common difficulty of dimensionality reduction methods: preserving both local and global structures of the original sample in a single 2-dimensional visualization. Its algorithm combines the well-known multidimensional scaling (MDS) tool with the $k$-medoids data clustering technique, and enables hierarchical embedding, sparsification and estimation of 2-dimensional coordinates for additional points. While cl-MDS is a generally applicable tool, we also include specific recipes for atomic structure applications. We apply this method to non-linear data of increasing complexity where different layers of locality are relevant, showing a clear improvement in their retrieval and visualization quality.
This work concerns the enrichment of Discontinuous Galerkin (DG) bases, so that the resulting scheme provides a much better approximation of steady solutions to hyperbolic systems of balance laws. The basis enrichment leverages a prior - an approximation of the steady solution - which we propose to compute using a Physics-Informed Neural Network (PINN). To that end, after presenting the classical DG scheme, we show how to enrich its basis with a prior. Convergence results and error estimates follow, in which we prove that the basis with prior does not change the order of convergence, and that the error constant is improved. To construct the prior, we elect to use parametric PINNs, which we introduce, as well as the algorithms to construct a prior from PINNs. We finally perform several validation experiments on four different hyperbolic balance laws to highlight the properties of the scheme. Namely, we show that the DG scheme with prior is much more accurate on steady solutions than the DG scheme without prior, while retaining the same approximation quality on unsteady solutions.
Digital credentials represent a cornerstone of digital identity on the Internet. To achieve privacy, certain functionalities in credentials should be implemented. One is selective disclosure, which allows users to disclose only the claims or attributes they want. This paper presents a novel approach to selective disclosure that combines Merkle hash trees and Boneh-Lynn-Shacham (BLS) signatures. Combining these approaches, we achieve selective disclosure of claims in a single credential and creation of a verifiable presentation containing selectively disclosed claims from multiple credentials signed by different parties. Besides selective disclosure, we enable issuing credentials signed by multiple issuers using this approach.
Latent variable models serve as powerful tools to infer underlying dynamics from observed neural activity. However, due to the absence of ground truth data, prediction benchmarks are often employed as proxies. In this study, we reveal the limitations of the widely-used 'co-smoothing' prediction framework and propose an improved few-shot prediction approach that encourages more accurate latent dynamics. Utilizing a student-teacher setup with Hidden Markov Models, we demonstrate that the high co-smoothing model space can encompass models with arbitrary extraneous dynamics within their latent representations. To address this, we introduce a secondary metric -- a few-shot version of co-smoothing. This involves performing regression from the latent variables to held-out channels in the data using fewer trials. Our results indicate that among models with near-optimal co-smoothing, those with extraneous dynamics underperform in the few-shot co-smoothing compared to 'minimal' models devoid of such dynamics. We also provide analytical insights into the origin of this phenomenon. We further validate our findings on real neural data using two state-of-the-art methods: LFADS and STNDT. In the absence of ground truth, we suggest a proxy measure to quantify extraneous dynamics. By cross-decoding the latent variables of all model pairs with high co-smoothing, we identify models with minimal extraneous dynamics. We find a correlation between few-shot co-smoothing performance and this new measure. In summary, we present a novel prediction metric designed to yield latent variables that more accurately reflect the ground truth, offering a significant improvement for latent dynamics inference.
We study the graph parameter elimination distance to bounded degree, which was introduced by Bulian and Dawar in their study of the parameterized complexity of the graph isomorphism problem. We prove that the problem is fixed-parameter tractable on planar graphs, that is, there exists an algorithm that given a planar graph $G$ and integers $d$ and $k$ decides in time $f(k,d)\cdot n^c$ for a computable function~$f$ and constant $c$ whether the elimination distance of $G$ to the class of degree $d$ graphs is at most $k$.
Random walks are widely used for mining networks due to the computational efficiency of computing them. For instance, graph representation learning learns a d-dimensional embedding space, so that the nodes that tend to co-occur on random walks (a proxy of being in the same network neighborhood) are close in the embedding space. Specific local network topology (i.e., structure) influences the co-occurrence of nodes on random walks, so random walks of limited length capture only partial topological information, hence diminishing the performance of downstream methods. We explicitly capture all topological neighborhood information and improve performance by introducing orbit adjacencies that quantify the adjacencies of two nodes as co-occurring on a given pair of graphlet orbits, which are symmetric positions on graphlets (small, connected, non-isomorphic, induced subgraphs of a large network). Importantly, we mathematically prove that random walks on up to k nodes capture only a subset of all the possible orbit adjacencies for up to k-node graphlets. Furthermore, we enable orbit adjacency-based analysis of networks by developing an efficient GRaphlet-orbit ADjacency COunter (GRADCO), which exhaustively computes all 28 orbit adjacency matrices for up to four-node graphlets. Note that four-node graphlets suffice, because real networks are usually small-world. In large networks on around 20,000 nodes, GRADCOcomputesthe28matricesinminutes. Onsixrealnetworksfromvarious domains, we compare the performance of node-label predictors obtained by using the network embeddings based on our orbit adjacencies to those based on random walks. We find that orbit adjacencies, which include those unseen by random walks, outperform random walk-based adjacencies, demonstrating the importance of the inclusion of the topological neighborhood information that is unseen by random walks.
In this work, we compute the lower bound of the integrality gap of the Metric Steiner Tree Problem (MSTP) on a graph for some small values of number of nodes and terminals. After debating about some limitations of the most used formulation for the Steiner Tree Problem, namely the Bidirected Cut Formulation, we introduce a novel formulation, that we named Complete Metric formulation, tailored for the metric case. We prove some interesting properties of this formulation and characterize some types of vertices. Finally, we define a linear program (LP) by adapting a method already used in the context of the Travelling Salesman Problem. This LP takes as input a vertex of the polytope of the CM relaxation and provides an MSTP instance such that (a) the optimal solution is precisely that vertex and (b) among all of the instances having that vertex as its optimal solution, the selected instance is the one having the highest integrality gap. We propose two heuristics for generating vertices to provide inputs for our procedure. In conclusion, we raise several conjectures and open questions.
Aboulker et al. proved that a digraph with large enough dichromatic number contains any fixed digraph as a subdivision. The dichromatic number of a digraph is the smallest order of a partition of its vertex set into acyclic induced subdigraphs. A digraph is dicritical if the removal of any arc or vertex decreases its dichromatic number. In this paper we give sufficient conditions on a dicritical digraph of large order or large directed girth to contain a given digraph as a subdivision. In particular, we prove that (i) for every integers $k,\ell$, large enough dicritical digraphs with dichromatic number $k$ contain an orientation of a cycle with at least $\ell$ vertices; (ii) there are functions $f,g$ such that for every subdivision $F^*$ of a digraph $F$, digraphs with directed girth at least $f(F^*)$ and dichromatic number at least $g(F)$ contain a subdivision of $F^*$, and if $F$ is a tree, then $g(F)=|V(F)|$; (iii) there is a function $f$ such that for every subdivision $F^*$ of $TT_3$ (the transitive tournament on three vertices), digraphs with directed girth at least $f(F^*)$ and minimum out-degree at least $2$ contain $F^*$ as a subdivision.
We present a novel formal system for proving quantitative-leakage properties of programs. Based on a theory of Quantitative Information Flow (QIF) that models information leakage as a noisy communication channel, it uses "gain-functions" for the description and measurement of expected leaks. We use a small imperative programming language, augmented with leakage features, and with it express adversaries' activities in the style of, but more generally than, the Hoare triples or expectation transformers that traditionally express deterministic or probabilistic correctness but without information flow. The programs are annotated with "gain-expressions" that capture simple adversarial settings such as "Guess the secret in one try." but also much more general ones; and our formal syntax and logic -based framework enables us to transform such gain-expressions that apply after a program has finished to ones that equivalently apply before the program has begun. In that way we enable a formal proof-based reasoning system for QIF at the source level. We apply it to the %programming language we have chosen, and demonstrate its effectiveness in a number of small but sometimes intricate situations.