亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our main contribution is a general framework to design \emph{efficient} polynomial time approximation schemes (EPTAS) for fundamental stochastic combinatorial optimization problems. Given an error parameter $\epsilon>0$, such algorithmic schemes attain a $(1-\epsilon)$-approximation in $t(\epsilon)\cdot poly(n)$ time, where $t(\cdot)$ is some function that depends only on $\epsilon$. Technically speaking, our approach relies on presenting tailor-made reductions to a newly-introduced multi-dimensional load balancing problem. Even though the single-dimensional problem is already known to be APX-Hard, we prove that an EPTAS can be designed under certain structural assumptions, which hold for each of our applications. To demonstrate the versatility of our framework, we first study selection-stopping settings to derive an EPTAS for the Free-Order Prophets problem [Agrawal et al., EC'20] and for its cost-driven generalization, Pandora's Box with Commitment [Fu et al., ICALP'18]. These results constitute the first approximation schemes in the non-adaptive setting and improve on known {inefficient} polynomial time approximation schemes (PTAS) for their adaptive variants. Next, turning our attention to stochastic probing problems, we obtain an EPTAS for the adaptive ProbeMax problem as well as for its non-adaptive counterpart; in both cases, state-of-the-art approximability results have been inefficient PTASes [Chen et al., NIPS'16; Fu et al., ICALP'18].

相關內容

We develop a general and practical framework to address the problem of the optimal design of dynamic fee mechanisms for multiple blockchain resources. Our framework allows to compute policies that optimally trade-off between adjusting resource prices to handle persistent demand shifts versus being robust to local noise in the observed block demand. In the general case with more than one resource, our optimal policies correctly handle cross-effects (complementarity and substitutability) in resource demands. We also show how these cross-effects can be used to inform resource design, i.e. combining resources into bundles that have low demand-side cross-effects can yield simpler and more efficient price-update rules. Our framework is also practical, we demonstrate how it can be used to refine or inform the design of heuristic fee update rules such as EIP-1559 or EIP-4844 with two case studies. We then estimate a uni-dimensional version of our model using real market data from the Ethereum blockchain and empirically compare the performance of our optimal policies to EIP-1559.

The problem of function approximation by neural dynamical systems has typically been approached in a top-down manner: Any continuous function can be approximated to an arbitrary accuracy by a sufficiently complex model with a given architecture. This can lead to high-complexity controls which are impractical in applications. In this paper, we take the opposite, constructive approach: We impose various structural restrictions on system dynamics and consequently characterize the class of functions that can be realized by such a system. The systems are implemented as a cascade interconnection of a neural stochastic differential equation (Neural SDE), a deterministic dynamical system, and a readout map. Both probabilistic and geometric (Lie-theoretic) methods are used to characterize the classes of functions realized by such systems.

We study the existence of optimal and p-optimal proof systems for classes in the Boolean hierarchy over $\mathrm{NP}$. Our main results concern $\mathrm{DP}$, i.e., the second level of this hierarchy: If all sets in $\mathrm{DP}$ have p-optimal proof systems, then all sets in $\mathrm{coDP}$ have p-optimal proof systems. The analogous implication for optimal proof systems fails relative to an oracle. As a consequence, we clarify such implications for all classes $\mathcal{C}$ and $\mathcal{D}$ in the Boolean hierarchy over $\mathrm{NP}$: either we can prove the implication or show that it fails relative to an oracle. Furthermore, we show that the sets $\mathrm{SAT}$ and $\mathrm{TAUT}$ have p-optimal proof systems, if and only if all sets in the Boolean hierarchy over $\mathrm{NP}$ have p-optimal proof systems which is a new characterization of a conjecture studied by Pudl\'ak.

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate scale quantum (NISQ) computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions, while having access only to limited training data. Existing generalization analyses, while identifying important general trends and scaling laws, cannot be used to assign reliable and informative "error bars" to the decisions made by quantum models. In this article, we propose a general methodology that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, of the number of shots, of the ansatz, of the training algorithm, and of the presence of quantum hardware noise. The approach, which builds on probabilistic conformal prediction, turns an arbitrary, possibly small, number of shots from a pre-trained quantum model into a set prediction, e.g., an interval, that provably contains the true target with any desired coverage level. Experimental results confirm the theoretical calibration guarantees of the proposed framework, referred to as quantum conformal prediction.

Realistic reservoir simulation is known to be prohibitively expensive in terms of computation time when increasing the accuracy of the simulation or by enlarging the model grid size. One method to address this issue is to parallelize the computation by dividing the model in several partitions and using multiple CPUs to compute the result using techniques such as MPI and multi-threading. Alternatively, GPUs are also a good candidate to accelerate the computation due to their massively parallel architecture that allows many floating point operations per second to be performed. The numerical iterative solver takes thus the most computational time and is challenging to solve efficiently due to the dependencies that exist in the model between cells. In this work, we evaluate the OPM Flow simulator and compare several state-of-the-art GPU solver libraries as well as custom developed solutions for a BiCGStab solver using an ILU0 preconditioner and benchmark their performance against the default DUNE library implementation running on multiple CPU processors using MPI. The evaluated GPU software libraries include a manual linear solver in OpenCL and the integration of several third party sparse linear algebra libraries, such as cuSparse, rocSparse, and amgcl. To perform our bench-marking, we use small, medium, and large use cases, starting with the public test case NORNE that includes approximately 50k active cells and ending with a large model that includes approximately 1 million active cells. We find that a GPU can accelerate a single dual-threaded MPI process up to 5.6 times, and that it can compare with around 8 dual-threaded MPI processes.

Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher-order nonlinearities of some trace monomial Boolean functions. We prove lower bounds on the second-order nonlinearities of functions $\mathrm{tr}_n(x^7)$ and $\mathrm{tr}_n(x^{2^r+3})$ where $n=2r$. Among all trace monomials, our bounds match the best second-order nonlinearity lower bounds by \cite{Car08} and \cite{YT20} for odd and even $n$ respectively. We prove a lower bound on the third-order nonlinearity for functions $\mathrm{tr}_n(x^{15})$, which is the best third-order nonlinearity lower bound. For any $r$, we prove that the $r$-th order nonlinearity of $\mathrm{tr}_n(x^{2^{r+1}-1})$ is at least $2^{n-1}-2^{(1-2^{-r})n+\frac{r}{2^{r-1}}-1}- O(2^{\frac{n}{2}})$. For $r \ll \log_2 n$, this is the best lower bound among all explicit functions.

In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.

Gradient methods are experiencing a growth in methodological and theoretical developments owing to the challenges of optimization problems arising in data science. Focusing on data science applications with expensive objective function evaluations yet inexpensive gradient function evaluations, gradient methods that never make objective function evaluations are either being rejuvenated or actively developed. However, as we show, such gradient methods are all susceptible to catastrophic divergence under realistic conditions for data science applications. In light of this, gradient methods which make use of objective function evaluations become more appealing, yet, as we show, can result in an exponential increase in objective evaluations between accepted iterates. As a result, existing gradient methods are poorly suited to the needs of optimization problems arising from data science. In this work, we address this gap by developing a generic methodology that economically uses objective function evaluations in a problem-driven manner to prevent catastrophic divergence and avoid an explosion in objective evaluations between accepted iterates. Our methodology allows for specific procedures that can make use of specific step size selection methodologies or search direction strategies, and we develop a novel step size selection methodology that is well-suited to data science applications. We show that a procedure resulting from our methodology is highly competitive with standard optimization methods on CUTEst test problems. We then show a procedure resulting from our methodology is highly favorable relative to standard optimization methods on optimization problems arising in our target data science applications. Thus, we provide a novel gradient methodology that is better suited to optimization problems arising in data science.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司