亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

These are self-contained lecture notes for spectral independence. For an $n$-vertex graph, the spectral independence condition is a bound on the maximum eigenvalue of the $n\times n$ influence matrix whose entries capture the influence between pairs of vertices, it is closely related to the covariance matrix. We will present recent results showing that spectral independence implies the mixing time of the Glauber dynamics is polynomial (where the degree of the polynomial depends on certain parameters). The proof utilizes local-to-global theorems which we will detail in these notes. Finally, we will present more recent results showing that spectral independence implies an optimal bound on the relaxation time (inverse spectral gap) and with some additional conditions implies an optimal mixing time bound of $O(n\log{n})$ for the Glauber dynamics. We also present the results of Anari, Liu, Oveis Gharan, and Vinzant (2019) for generating a random basis of a matroid. The analysis of the associated bases-exchange walk utilizes the local-to-global theorems used for spectral independence with the Trickle-Down Theorem of Oppenheim (2018) to analyze the local walks. Our focus in these notes is on the analysis of the spectral gap of the associated Markov chains from a functional analysis perspective, and we present proofs of the associated local-to-global theorems from this same Markov chain perspective.

相關內容

In response to the evolving landscape of quantum computing and the escalating vulnerabilities in classical cryptographic systems, our paper introduces a unified cryptographic framework. Rooted in the innovative work of Kuang et al., we leverage two novel primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). Our approach adeptly confronts the challenges posed by quantum advancements. Utilizing the Galois Permutation Group's matrix representations and inheriting its bijective and non-commutative properties, QPP achieves quantum-secure symmetric key encryption, seamlessly extending Shannon's perfect secrecy to both classical and quantum-native systems. Meanwhile, HPPK, free from NP-hard problems, fortifies symmetric encryption for the plain public key. It accomplishes this by concealing the mathematical structure through modular multiplications or arithmetic representations of Galois Permutation Group over hidden rings, harnessing their partial homomorphic properties. This allows for secure computation on encrypted data during secret encapsulations, bolstering the security of the plain public key. The seamless integration of KEM and DS within HPPK cryptography yields compact key, cipher, and signature sizes, demonstrating exceptional performance. This paper organically unifies QPP and HPPK under the Galois Permutation Group, marking a significant advancement in laying the groundwork for quantum-resistant cryptographic protocols. Our contribution propels the development of secure communication systems amid the era of quantum computing.

We describe a version of the FGLM algorithm that can be used to compute generic fibers of positive-dimensional polynomial ideals. It combines the FGLM algorithm with a Hensel lifting strategy. We show that this algorithm has a complexity quasi-linear in the number of lifting steps. Some provided experimental data also demonstrates the practical efficacy of our algorithm. Additionally, we sketch a related Hensel lifting method to compute Gr\"obner bases using so-called tracers.

We investigated the human capacity to acquire multiple visuomotor mappings for de novo skills. Using a grid navigation paradigm, we tested whether contextual cues implemented as different "grid worlds", allow participants to learn two distinct key-mappings more efficiently. Our results indicate that when contextual information is provided, task performance is significantly better. The same held true for meta-reinforcement learning agents that differed in whether or not they receive contextual information when performing the task. We evaluated their accuracy in predicting human performance in the task and analyzed their internal representations. The results indicate that contextual cues allow the formation of separate representations in space and time when using different visuomotor mappings, whereas the absence of them favors sharing one representation. While both strategies can allow learning of multiple visuomotor mappings, we showed contextual cues provide a computational advantage in terms of how many mappings can be learned.

Evolutionary Computation algorithms have been used to solve optimization problems in relation with architectural, hyper-parameter or training configuration, forging the field known today as Neural Architecture Search. These algorithms have been combined with other techniques such as the pruning of Neural Networks, which reduces the complexity of the network, and the Transfer Learning, which lets the import of knowledge from another problem related to the one at hand. The usage of several criteria to evaluate the quality of the evolutionary proposals is also a common case, in which the performance and complexity of the network are the most used criteria. This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm. MO-EvoPruneDeepTL uses Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm, which guides the evolution based in the performance, complexity and robustness of the network, being the robustness a great quality indicator for the evolved models. We carry out different experiments with several datasets to assess the benefits of our proposal. Results show that our proposal achieves promising results in all the objectives, and direct relation are presented among them. The experiments also show that the most influential neurons help us explain which parts of the input images are the most relevant for the prediction of the pruned neural network. Lastly, by virtue of the diversity within the Pareto front of pruning patterns produced by the proposal, it is shown that an ensemble of differently pruned models improves the overall performance and robustness of the trained networks.

Dimensionality reduction methods, such as principal component analysis (PCA) and factor analysis, are central to many problems in data science. There are, however, serious and well-understood challenges to finding robust low dimensional approximations for data with significant heteroskedastic noise. This paper introduces a relaxed version of Minimum Trace Factor Analysis (MTFA), a convex optimization method with roots dating back to the work of Ledermann in 1940. This relaxation is particularly effective at not overfitting to heteroskedastic perturbations and addresses the commonly cited Heywood cases in factor analysis and the recently identified "curse of ill-conditioning" for existing spectral methods. We provide theoretical guarantees on the accuracy of the resulting low rank subspace and the convergence rate of the proposed algorithm to compute that matrix. We develop a number of interesting connections to existing methods, including HeteroPCA, Lasso, and Soft-Impute, to fill an important gap in the already large literature on low rank matrix estimation. Numerical experiments benchmark our results against several recent proposals for dealing with heteroskedastic noise.

Our concrete objective is to present both ordinary bisimulations and probabilistic bisimulations in a common coalgebraic framework based on multiset bisimulations. For that we show how to relate the underlying powerset and probabilistic distributions functors with the multiset functor by means of adequate natural transformations. This leads us to the general topic that we investigate in the paper: a natural transformation from a functor F to another G transforms F-bisimulations into G-bisimulations but, in general, it is not possible to express G-bisimulations in terms of F-bisimulations. However, they can be characterized by considering Hughes and Jacobs' notion of simulation, taking as the order on the functor F the equivalence induced by the epi-mono decomposition of the natural transformation relating F and G. We also consider the case of alternating probabilistic systems where non-deterministic and probabilistic choices are mixed, although only in a partial way, and extend all these results to categorical simulations.

Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of causal emergence. Two key problems are addressed: quantifying causal emergence and identifying it in data. Addressing the latter requires the use of machine learning techniques, thus establishing a connection between causal emergence and artificial intelligence. We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning. Consequently, progress in any of these areas can benefit the others. Potential applications and future perspectives are also discussed in the final section of the review.

This paper leverages the use of \emph{Gram iteration} an efficient, deterministic, and differentiable method for computing spectral norm with an upper bound guarantee. Designed for circular convolutional layers, we generalize the use of the Gram iteration to zero padding convolutional layers and prove its quadratic convergence. We also provide theorems for bridging the gap between circular and zero padding convolution's spectral norm. We design a \emph{spectral rescaling} that can be used as a competitive $1$-Lipschitz layer that enhances network robustness. Demonstrated through experiments, our method outperforms state-of-the-art techniques in precision, computational cost, and scalability. The code of experiments is available at //github.com/blaisedelattre/lip4conv.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司