We introduce and characterize the operational diversity order (ODO) in fading channels, as a proxy to the classical notion of diversity order at any arbitrary operational signal-to-noise ratio (SNR). Thanks to this definition, relevant insights are brought up in a number of cases: (i) We quantify that in line-of-sight scenarios an increased diversity order is attainable compared to that achieved asymptotically; (ii) this effect is attenuated, but still visible, in the presence of an additional dominant specular component; (iii) we confirm that the decay slope in Rayleigh product channels increases very slowly and never fully achieves unitary slope for finite values of SNR.
Matrix scaling problems with sparse cost matrices arise frequently in various domains, such as optimal transport, image processing, and machine learning. The Sinkhorn-Knopp algorithm is a popular iterative method for solving these problems, but its convergence properties in the presence of sparsity have not been thoroughly analyzed. This paper presents a theoretical analysis of the convergence rate of the Sinkhorn-Knopp algorithm specifically for sparse cost matrices. We derive novel bounds on the convergence rate that explicitly depend on the sparsity pattern and the degree of nonsparsity of the cost matrix. These bounds provide new insights into the behavior of the algorithm and highlight the potential for exploiting sparsity to develop more efficient solvers. We also explore connections between our sparse convergence results and existing convergence results for dense matrices, showing that our bounds generalize the dense case. Our analysis reveals that the convergence rate improves as the matrix becomes less sparse and as the minimum entry of the cost matrix increases relative to its maximum entry. These findings have important practical implications, suggesting that the Sinkhorn-Knopp algorithm may be particularly well-suited for large-scale matrix scaling problems with sparse cost matrices arising in real-world applications. Future research directions include investigating tighter bounds based on more sophisticated sparsity patterns, developing algorithm variants that actively exploit sparsity, and empirically validating the benefits of our theoretical results on real-world datasets. This work advances our understanding of the Sinkhorn-Knopp algorithm for an important class of matrix scaling problems and lays the foundation for designing more efficient and scalable solutions in practice.
The partial sums of integer sequences that count the occurrences of a specific pattern in the binary expansion of positive integers have been investigated by different authors since the 1950s. In this note, we introduce generalized pattern sequences, which count the occurrences of a finite number of different patterns in the expansion of positive integers in any integer base, and analyze their partial sums.
We consider the parameter estimation problem in the deviated Gaussian mixture of experts in which the data are generated from $(1 - \lambda^{\ast}) g_0(Y| X)+ \lambda^{\ast} \sum_{i = 1}^{k_{\ast}} p_{i}^{\ast} f(Y|(a_{i}^{\ast})^{\top}X+b_i^{\ast},\sigma_{i}^{\ast})$, where $X, Y$ are respectively a covariate vector and a response variable, $g_{0}(Y|X)$ is a known function, $\lambda^{\ast} \in [0, 1]$ is true but unknown mixing proportion, and $(p_{i}^{\ast}, a_{i}^{\ast}, b_{i}^{\ast}, \sigma_{i}^{\ast})$ for $1 \leq i \leq k^{\ast}$ are unknown parameters of the Gaussian mixture of experts. This problem arises from the goodness-of-fit test when we would like to test whether the data are generated from $g_{0}(Y|X)$ (null hypothesis) or they are generated from the whole mixture (alternative hypothesis). Based on the algebraic structure of the expert functions and the distinguishability between $g_0$ and the mixture part, we construct novel Voronoi-based loss functions to capture the convergence rates of maximum likelihood estimation (MLE) for our models. We further demonstrate that our proposed loss functions characterize the local convergence rates of parameter estimation more accurately than the generalized Wasserstein, a loss function being commonly used for estimating parameters in the Gaussian mixture of experts.
A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least $1-1/e$, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted matroid rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.
We propose a unifying framework for smoothed analysis of combinatorial local optimization problems, and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound $\phi$ on the probability density. The power of this tool can be demonstrated by instantiating it for various PLS-hard problems of interest to derive efficient smoothed running times (as a function of $\phi$ and the input size). Most notably, we focus on the important local optimization problem of finding pure Nash equilibria in Congestion Games, that has not been studied before from a smoothed analysis perspective. Specifically, we propose novel smoothed analysis models for general and Network Congestion Games, under various representations, including explicit, step-function, and polynomial resource latencies. We study PLS-hard instances of these problems and show that their standard local search algorithms run in polynomial smoothed time. Finally, we present further applications of our framework to a wide range of additional combinatorial problems, including local Max-Cut in weighted graphs, the Travelling Salesman problem (TSP) under the $k$-opt local heuristic, and finding pure equilibria in Network Coordination Games.
Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviours beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organisation of yarns into knitted fabrics has long been unresolved. We sought to unravel the mechanical roles of tensile mechanics, assembly and dynamics arising from the yarn level on fabric nonlinearity by developing a yarn-based dynamical model. This physically validated model captures the fundamental mechanical response of knitted fabrics, analogous to flexible metamaterials and biological fiber networks due to geometric nonlinearity within such hierarchical systems. Fabric anisotropy originates from observed yarn-yarn rearrangements during alignment dynamics and is topology-dependent. This yarn-based model also provides a design space of knitted fabrics to embed functionalities by varying geometric configuration and material property in instructed procedures compatible to machine manufacturing. Our hierarchical approach to build up a knitted fabrics computationally modernizes an ancient craft and represents a first step towards mechanical programmability of knitted fabrics in wide engineering applications.
We examine the continuous-time counterpart of mirror descent, namely mirror flow, on classification problems which are linearly separable. Such problems are minimised `at infinity' and have many possible solutions; we study which solution is preferred by the algorithm depending on the mirror potential. For exponential tailed losses and under mild assumptions on the potential, we show that the iterates converge in direction towards a $\phi_\infty$-maximum margin classifier. The function $\phi_\infty$ is the $\textit{horizon function}$ of the mirror potential and characterises its shape `at infinity'. When the potential is separable, a simple formula allows to compute this function. We analyse several examples of potentials and provide numerical experiments highlighting our results.
It is increasingly common to evaluate the same coreference resolution (CR) model on multiple datasets. Do these multi-dataset evaluations allow us to draw meaningful conclusions about model generalization? Or, do they rather reflect the idiosyncrasies of a particular experimental setup (e.g., the specific datasets used)? To study this, we view evaluation through the lens of measurement modeling, a framework commonly used in the social sciences for analyzing the validity of measurements. By taking this perspective, we show how multi-dataset evaluations risk conflating different factors concerning what, precisely, is being measured. This in turn makes it difficult to draw more generalizable conclusions from these evaluations. For instance, we show that across seven datasets, measurements intended to reflect CR model generalization are often correlated with differences in both how coreference is defined and how it is operationalized; this limits our ability to draw conclusions regarding the ability of CR models to generalize across any singular dimension. We believe the measurement modeling framework provides the needed vocabulary for discussing challenges surrounding what is actually being measured by CR evaluations.
This work presents a procedure to solve the Euler equations by explicitly updating, in a conservative manner, a generic thermodynamic variable such as temperature, pressure or entropy instead of the total energy. The presented procedure is valid for any equation of state and spatial discretization. When using complex equations of state such as Span-Wagner, choosing the temperature as the generic thermodynamic variable yields great reductions in the computational costs associated to thermodynamic evaluations. Results computed with a state of the art thermodynamic model are presented, and computational times are analyzed. Particular attention is dedicated to the conservation of total energy, the propagation speed of shock waves and jump conditions. The procedure is thoroughly tested using the Span-Wagner equation of state through the CoolProp thermodynamic library and the Van der Waals equation of state, both in the ideal and non-ideal compressible fluid-dynamics regimes, by comparing it to the standard total energy update and analytical solutions where available.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.