亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discrete normal distributions are defined as the distributions with prescribed means and covariance matrices which maximize entropy on the integer lattice support. The set of discrete normal distributions form an exponential family with cumulant function related to the Riemann theta function. In this paper, we present several formula for common statistical divergences between discrete normal distributions including the Kullback-Leibler divergence. In particular, we describe an efficient approximation technique for calculating the Kullback-Leibler divergence between discrete normal distributions via the projective $\gamma$-divergences.

相關內容

We consider the problem of testing for two Gibbs probabilities $\mu_0$ and $\mu_1$ defined for a dynamical system $(\Omega,T)$. Due to the fact that in general full orbits are not observable or computable, one needs to restrict to subclasses of tests defined by a finite time series $h(x_0), h(x_1)=h(T(x_0)),..., h(x_n)=h(T^n(x_0))$, $x_0\in \Omega$, $n\ge 0$, where $h:\Omega\to\mathbb R$ denotes a suitable measurable function. We determine in each class the Neyman-Pearson tests, the minimax tests, and the Bayes solutions and show the asymptotic decay of their risk functions as $n\to\infty$. In the case of $\Omega$ being a symbolic space, for each $n\in \mathbb{N}$, these optimal tests rely on the information of the measures for cylinder sets of size $n$.

One of the most pressing problems in modern analysis is the study of the growth rate of the norms of all possible matrix products $\|A_{i_{n}}\cdots A_{i_{0}}\|$ with factors from a set of matrices $\mathscr{A}$. So far, only for a relatively small number of classes of matrices $\mathscr{A}$ has it been possible to rigorously describe the sequences of matrices $\{A_{i_{n}}\}$ that guarantee the maximal growth rate of the corresponding norms. Moreover, in almost all theoretically studied cases, the index sequences $\{i_{n}\}$ of matrices maximizing the norms of the corresponding matrix products turned out to be periodic or so-called Sturmian sequences, which entails a whole set of ``good'' properties of the sequences $\{A_{i_{n}}\}$, in particular the existence of a limiting frequency of occurrence of each matrix factor $A_{i}\in\mathscr{A}$ in them. The paper determines a class of $2\times 2$ matrices consisting of two matrices similar to rotations of the plane in which the sequence $\{A_{i_{n}}\}$ maximizing the growth rate of the norms $\|A_{i_{n}}\cdots A_{i_{0}}\|$ is not Sturmian. All considerations are based on numerical modeling and cannot be considered mathematically rigorous in this part. Rather, they should be interpreted as a set of questions for further comprehensive theoretical analysis.

Although the widely linear least mean square error (WLMMSE) receiver has been an appealing option for multiple-input-multiple-output (MIMO) wireless systems, a statistical understanding on its pose-detection signal-to-interference-plus-noise ratio (SINR) in detail is still missing. To this end, we consider a WLMMSE MIMO transmission system with rectilinear or quasi-rectilinear (QR) signals over the uncorrelated Rayleigh fading channel and investigate the statistical properties of its SINR for an arbitrary antenna configuration with $N_t$ transmit antennas and $N_r$ receive ones. We first derive an analytic probability density function (PDF) of the SINR in terms of the confluent hypergeometric function of the second kind, for WLMMSE MIMO systems with an arbitrary $N_r$ and $N_t=2, 3$. For a more general case in practice, i.e., $N_t>3$, we resort to the moment generating function to obtain an approximate but closed form PDF under some mild conditions, which, as expected, is more Gaussian-like as $2N_r-N_t$ increases. The so-derived PDFs are able to provide key insights into the WLMMSE MIMO receiver in terms of the outage probability, the symbol error rate, and the diversity gain, all presented in closed form. In particular, its diversity gain and the gain improvement over the conventional LMMSE one are explicitly quantified as $N_r-(N_t-1)/2$ and $(N_t-1)/2$, respectively. Finally, Monte Carlo simulations support the analysis.

We study the Maximum Independent Set (MIS) problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of MIS is $\gamma$-stable if it has a unique optimal solution that remains the unique optimum under multiplicative perturbations of the weights by a factor of at most $\gamma\geq 1$. The goal then is to efficiently recover the unique optimal solution. In this work, we solve stable instances of MIS on several graphs classes: we solve $\widetilde{O}(\Delta/\sqrt{\log \Delta})$-stable instances on graphs of maximum degree $\Delta$, $(k - 1)$-stable instances on $k$-colorable graphs and $(1 + \varepsilon)$-stable instances on planar graphs. For general graphs, we present a strong lower bound showing that there are no efficient algorithms for $O(n^{\frac{1}{2} - \varepsilon})$-stable instances of MIS, assuming the planted clique conjecture. We also give an algorithm for $(\varepsilon n)$-stable instances. As a by-product of our techniques, we give algorithms and lower bounds for stable instances of Node Multiway Cut. Furthermore, we prove a general result showing that the integrality gap of convex relaxations of several maximization problems reduces dramatically on stable instances. Moreover, we initiate the study of certified algorithms, a notion recently introduced by Makarychev and Makarychev (2018), which is a class of $\gamma$-approximation algorithms that satisfy one crucial property: the solution returned is optimal for a perturbation of the original instance. We obtain $\Delta$-certified algorithms for MIS on graphs of maximum degree $\Delta$, and $(1+\varepsilon)$-certified algorithms on planar graphs. Finally, we analyze the algorithm of Berman and Furer (1994) and prove that it is a $\left(\frac{\Delta + 1}{3} + \varepsilon\right)$-certified algorithm for MIS on graphs of maximum degree $\Delta$ where all weights are equal to 1.

We study the connections between the notions of combinatorial discrepancy and graph degeneracy. In particular, we prove that the maximum discrepancy over all subgraphs $H$ of a graph $G$ of the neighborhood set system of $H$ is sandwiched between $\Omega(\log\mathrm{deg}(G))$ and $\mathcal{O}(\mathrm{deg}(G))$, where $\mathrm{deg}(G)$ denotes the degeneracy of $G$. We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers and deduce a new characterization of bounded expansion classes. Then, we switch to a model theoretical point of view, introduce pointer structures, and study their relations to graph classes with bounded expansion. We deduce that a monotone class of graphs has bounded expansion if and only if all the set systems definable in this class have bounded hereditary discrepancy. Using known bounds on the VC-density of set systems definable in nowhere dense classes we also give a characterization of nowhere dense classes in terms of discrepancy. As consequences of our results, we obtain a corollary on the discrepancy of neighborhood set systems of edge colored graphs, a polynomial-time algorithm to compute $\varepsilon$-approximations of size $\mathcal{O}(1/\varepsilon)$ for set systems definable in bounded expansion classes, an application to clique coloring, and even the non-existence of a quantifier elimination scheme for nowhere dense classes.

In this short note, we develop a local approximation for the log-ratio of the multivariate hypergeometric probability mass function over the corresponding multinomial probability mass function. In conjunction with the bounds from Carter (2002) and Ouimet (2021) on the total variation between the law of a multinomial vector jittered by a uniform on $(-1/2,1/2)^d$ and the law of the corresponding multivariate normal distribution, the local expansion for the log-ratio is then used to obtain a total variation bound between the law of a multivariate hypergeometric random vector jittered by a uniform on $(-1/2,1/2)^d$ and the law of the corresponding multivariate normal distribution. As a corollary, we find an upper bound on the Le Cam distance between multivariate hypergeometric and multivariate normal experiments.

The estimation of information measures of continuous distributions based on samples is a fundamental problem in statistics and machine learning. In this paper, we analyze estimates of differential entropy in $K$-dimensional Euclidean space, computed from a finite number of samples, when the probability density function belongs to a predetermined convex family $\mathcal{P}$. First, estimating differential entropy to any accuracy is shown to be infeasible if the differential entropy of densities in $\mathcal{P}$ is unbounded, clearly showing the necessity of additional assumptions. Subsequently, we investigate sufficient conditions that enable confidence bounds for the estimation of differential entropy. In particular, we provide confidence bounds for simple histogram based estimation of differential entropy from a fixed number of samples, assuming that the probability density function is Lipschitz continuous with known Lipschitz constant and known, bounded support. Our focus is on differential entropy, but we provide examples that show that similar results hold for mutual information and relative entropy as well.

We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.

Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司