亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) are transforming human-computer interaction and conceptions of artificial intelligence (AI) with their impressive capacities for conversing and reasoning in natural language. There is growing interest in whether LLMs have theory of mind (ToM); the ability to reason about the mental and emotional states of others that is core to human social intelligence. As LLMs are integrated into the fabric of our personal, professional and social lives and given greater agency to make decisions with real-world consequences, there is a critical need to understand how they can be aligned with human values. ToM seems to be a promising direction of inquiry in this regard. Following the literature on the role and impacts of human ToM, this paper identifies key areas in which LLM ToM will show up in human:LLM interactions at individual and group levels, and what opportunities and risks for alignment are raised in each. On the individual level, the paper considers how LLM ToM might manifest in goal specification, conversational adaptation, empathy and anthropomorphism. On the group level, it considers how LLM ToM might facilitate collective alignment, cooperation or competition, and moral judgement-making. The paper lays out a broad spectrum of potential implications and suggests the most pressing areas for future research.

相關內容

大(da)語(yu)言模型(xing)是基(ji)于海量(liang)文(wen)本(ben)數(shu)據(ju)訓練的(de)(de)深(shen)度學習模型(xing)。它(ta)不僅能(neng)(neng)夠(gou)(gou)生(sheng)成自(zi)然語(yu)言文(wen)本(ben),還能(neng)(neng)夠(gou)(gou)深(shen)入理解文(wen)本(ben)含義,處理各種自(zi)然語(yu)言任務,如文(wen)本(ben)摘要、問答、翻譯等。2023年,大(da)語(yu)言模型(xing)及其在人工(gong)智能(neng)(neng)領域的(de)(de)應(ying)用(yong)已(yi)成為全球科技研(yan)究(jiu)的(de)(de)熱點,其在規(gui)模上的(de)(de)增(zeng)長尤(you)為引人注目(mu),參數(shu)量(liang)已(yi)從最(zui)初的(de)(de)十(shi)幾億(yi)躍升(sheng)到如今的(de)(de)一萬億(yi)。參數(shu)量(liang)的(de)(de)提升(sheng)使得模型(xing)能(neng)(neng)夠(gou)(gou)更加(jia)(jia)精(jing)細地捕捉(zhuo)人類(lei)語(yu)言微(wei)妙之處,更加(jia)(jia)深(shen)入地理解人類(lei)語(yu)言的(de)(de)復雜(za)性。在過去的(de)(de)一年里,大(da)語(yu)言模型(xing)在吸納新知識、分解復雜(za)任務以及圖文(wen)對(dui)齊(qi)等多方(fang)面(mian)都有顯著提升(sheng)。隨著技術的(de)(de)不斷成熟,它(ta)將不斷拓展其應(ying)用(yong)范(fan)圍,為人類(lei)提供(gong)更加(jia)(jia)智能(neng)(neng)化(hua)和個性化(hua)的(de)(de)服務,進一步改善人們的(de)(de)生(sheng)活和生(sheng)產方(fang)式(shi)。

Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.

Large language models have been flourishing in the natural language processing (NLP) domain, and their potential for recommendation has been paid much attention to. Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns due to their innate weakness in interpreting numerical features and the overhead for long context, where the temporal relations among user behaviors, subtle quantitative signals among different ratings, and various side features of items are not well explored. Existing works only fine-tune a sole LLM on given text data without introducing that important information to it, leaving these problems unsolved. In this paper, we propose ELCoRec to Enhance Language understanding with CoPropagation of numerical and categorical features for Recommendation. Concretely, we propose to inject the preference understanding capability into LLM via a GAT expert model where the user preference is better encoded by parallelly propagating the temporal relations, and rating signals as well as various side information of historical items. The parallel propagation mechanism could stabilize heterogeneous features and offer an informative user preference encoding, which is then injected into the language models via soft prompting at the cost of a single token embedding. To further obtain the user's recent interests, we proposed a novel Recent interaction Augmented Prompt (RAP) template. Experiment results over three datasets against strong baselines validate the effectiveness of ELCoRec. The code is available at //anonymous.4open.science/r/CIKM_Code_Repo-E6F5/README.md.

Large language models (LLMs) have revolutionized the field of NLP. Notably, their in-context learning capabilities also enable their use as evaluation metrics for natural language generation, making them particularly advantageous in low-resource scenarios and time-restricted applications. In this work, we introduce PrExMe, a large-scale prompt exploration for metrics, where we evaluate more than 720 prompt templates for open-source LLM-based metrics on machine translation (MT) and summarization datasets, totalling over 6.6M evaluations. This extensive comparison (1) serves as a benchmark of the performance of recent open-source LLMs as metrics and (2) explores the stability and variability of different prompting strategies. We discover that, on the one hand, there are scenarios for which prompts are stable. For instance, some LLMs show idiosyncratic preferences and favor to grade generated texts with textual labels while others prefer to return numeric scores. On the other hand, the stability of prompts and model rankings can be susceptible to seemingly innocuous changes. For example, changing the requested output format from "0 to 100" to "-1 to +1" can strongly affect the rankings in our evaluation. Our study contributes to understanding the impact of different prompting approaches on LLM-based metrics for MT and summarization evaluation, highlighting the most stable prompting patterns and potential limitations.

Exploring and understanding language data is a fundamental stage in all areas dealing with human language. It allows NLP practitioners to uncover quality concerns and harmful biases in data before training, and helps linguists and social scientists to gain insight into language use and human behavior. Yet, there is currently a lack of a unified, customizable tool to seamlessly inspect and visualize language variation and bias across multiple variables, language units, and diverse metrics that go beyond descriptive statistics. In this paper, we introduce Variationist, a highly-modular, extensible, and task-agnostic tool that fills this gap. Variationist handles at once a potentially unlimited combination of variable types and semantics across diversity and association metrics with regards to the language unit of choice, and orchestrates the creation of up to five-dimensional interactive charts for over 30 variable type-semantics combinations. Through our case studies on computational dialectology, human label variation, and text generation, we show how Variationist enables researchers from different disciplines to effortlessly answer specific research questions or unveil undesired associations in language data. A Python library, code, documentation, and tutorials are made publicly available to the research community.

Large language models (LLMs) are increasingly popular but are also prone to generating bias, toxic or harmful language, which can have detrimental effects on individuals and communities. Although most efforts is put to assess and mitigate toxicity in generated content, it is primarily concentrated on English, while it's essential to consider other languages as well. For addressing this issue, we create and release FrenchToxicityPrompts, a dataset of 50K naturally occurring French prompts and their continuations, annotated with toxicity scores from a widely used toxicity classifier. We evaluate 14 different models from four prevalent open-sourced families of LLMs against our dataset to assess their potential toxicity across various dimensions. We hope that our contribution will foster future research on toxicity detection and mitigation beyond Englis

Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

北京阿比特科技有限公司