亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing works on weakly-supervised audio-visual video parsing adopt hybrid attention network (HAN) as the multi-modal embedding to capture the cross-modal context. It embeds the audio and visual modalities with a shared network, where the cross-attention is performed at the input. However, such an early fusion method highly entangles the two non-fully correlated modalities and leads to sub-optimal performance in detecting single-modality events. To deal with this problem, we propose the messenger-guided mid-fusion transformer to reduce the uncorrelated cross-modal context in the fusion. The messengers condense the full cross-modal context into a compact representation to only preserve useful cross-modal information. Furthermore, due to the fact that microphones capture audio events from all directions, while cameras only record visual events within a restricted field of view, there is a more frequent occurrence of unaligned cross-modal context from audio for visual event predictions. We thus propose cross-audio prediction consistency to suppress the impact of irrelevant audio information on visual event prediction. Experiments consistently illustrate the superior performance of our framework compared to existing state-of-the-art methods.

相關內容

In recent years, there has been growing interest in the video-based action quality assessment (AQA). Most existing methods typically solve AQA problem by considering the entire video yet overlooking the inherent stage-level characteristics of actions. To address this issue, we design a novel Multi-stage Contrastive Regression (MCoRe) framework for the AQA task. This approach allows us to efficiently extract spatial-temporal information, while simultaneously reducing computational costs by segmenting the input video into multiple stages or procedures. Inspired by the graph contrastive learning, we propose a new stage-wise contrastive learning loss function to enhance performance. As a result, MCoRe demonstrates the state-of-the-art result so far on the widely-adopted fine-grained AQA dataset.

A key benefit of deep vision-language models such as CLIP is that they enable zero-shot open vocabulary classification; the user has the ability to define novel class labels via natural language prompts at inference time. However, while CLIP-based zero-shot classifiers have demonstrated competitive performance across a range of domain shifts, they remain highly vulnerable to adversarial attacks. Therefore, ensuring the robustness of such models is crucial for their reliable deployment in the wild. In this work, we introduce Open Vocabulary Certification (OVC), a fast certification method designed for open-vocabulary models like CLIP via randomized smoothing techniques. Given a base "training" set of prompts and their corresponding certified CLIP classifiers, OVC relies on the observation that a classifier with a novel prompt can be viewed as a perturbed version of nearby classifiers in the base training set. Therefore, OVC can rapidly certify the novel classifier using a variation of incremental randomized smoothing. By using a caching trick, we achieve approximately two orders of magnitude acceleration in the certification process for novel prompts. To achieve further (heuristic) speedups, OVC approximates the embedding space at a given input using a multivariate normal distribution bypassing the need for sampling via forward passes through the vision backbone. We demonstrate the effectiveness of OVC on through experimental evaluation using multiple vision-language backbones on the CIFAR-10 and ImageNet test datasets.

The wav2vec 2.0 and integrated spectro-temporal graph attention network (AASIST) based countermeasure achieves great performance in speech anti-spoofing. However, current spoof speech detection systems have fixed training and evaluation durations, while the performance degrades significantly during short utterance evaluation. To solve this problem, AASIST can be improved to AASIST2 by modifying the residual blocks to Res2Net blocks. The modified Res2Net blocks can extract multi-scale features and improve the detection performance for speech of different durations, thus improving the short utterance evaluation performance. On the other hand, adaptive large margin fine-tuning (ALMFT) has achieved performance improvement in short utterance speaker verification. Therefore, we apply Dynamic Chunk Size (DCS) and ALMFT training strategies in speech anti-spoofing to further improve the performance of short utterance evaluation. Experiments demonstrate that the proposed AASIST2 improves the performance of short utterance evaluation while maintaining the performance of regular evaluation on different datasets.

Spatio-temporal video grounding (or STVG) task aims at locating a spatio-temporal tube for a specific instance given a text query. Despite advancements, current methods easily suffer the distractors or heavy object appearance variations in videos due to insufficient object information from the text, leading to degradation. Addressing this, we propose a novel framework, context-guided STVG (CG-STVG), which mines discriminative instance context for object in videos and applies it as a supplementary guidance for target localization. The key of CG-STVG lies in two specially designed modules, including instance context generation (ICG), which focuses on discovering visual context information (in both appearance and motion) of the instance, and instance context refinement (ICR), which aims to improve the instance context from ICG by eliminating irrelevant or even harmful information from the context. During grounding, ICG, together with ICR, are deployed at each decoding stage of a Transformer architecture for instance context learning. Particularly, instance context learned from one decoding stage is fed to the next stage, and leveraged as a guidance containing rich and discriminative object feature to enhance the target-awareness in decoding feature, which conversely benefits generating better new instance context for improving localization finally. Compared to existing methods, CG-STVG enjoys object information in text query and guidance from mined instance visual context for more accurate target localization. In our experiments on three benchmarks, including HCSTVG-v1/-v2 and VidSTG, CG-STVG sets new state-of-the-arts in m_tIoU and m_vIoU on all of them, showing its efficacy. The code will be released at //github.com/HengLan/CGSTVG.

Existing music-driven 3D dance generation methods mainly concentrate on high-quality dance generation, but lack sufficient control during the generation process. To address these issues, we propose a unified framework capable of generating high-quality dance movements and supporting multi-modal control, including genre control, semantic control, and spatial control. First, we decouple the dance generation network from the dance control network, thereby avoiding the degradation in dance quality when adding additional control information. Second, we design specific control strategies for different control information and integrate them into a unified framework. Experimental results show that the proposed dance generation framework outperforms state-of-the-art methods in terms of motion quality and controllability.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

北京阿比特科技有限公司