Manipulation of objects in-hand without an object model is a foundational skill for many tasks in unstructured environments. In many cases, vision-only approaches may not be feasible; for example, due to occlusion in cluttered spaces. In this paper, we introduce a method to reorient unknown objects by incrementally building a probabilistic estimate of the object shape and pose during task-driven manipulation. Our method leverages Bayesian optimization to strategically trade-off exploration of the global object shape with efficient task completion. We demonstrate our approach on a Tactile-Enabled Roller Grasper, a gripper that rolls objects in hand while continuously collecting tactile data. We evaluate our method in simulation on a set of randomly generated objects and find that our method reliably reorients objects while significantly reducing the exploration time needed to do so. On the Roller Grasper hardware, we show successful qualitative reconstruction of the object model. In summary, this work (1) presents a system capable of simultaneously learning unknown 3D object shape and pose using tactile sensing; and (2) demonstrates that task-driven exploration results in more efficient object manipulation than the common paradigm of complete object exploration before task-completion.
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
Single-channel deep speech enhancement approaches often estimate a single multiplicative mask to extract clean speech without a measure of its accuracy. Instead, in this work, we propose to quantify the uncertainty associated with clean speech estimates in neural network-based speech enhancement. Predictive uncertainty is typically categorized into aleatoric uncertainty and epistemic uncertainty. The former accounts for the inherent uncertainty in data and the latter corresponds to the model uncertainty. Aiming for robust clean speech estimation and efficient predictive uncertainty quantification, we propose to integrate statistical complex Gaussian mixture models (CGMMs) into a deep speech enhancement framework. More specifically, we model the dependency between input and output stochastically by means of a conditional probability density and train a neural network to map the noisy input to the full posterior distribution of clean speech, modeled as a mixture of multiple complex Gaussian components. Experimental results on different datasets show that the proposed algorithm effectively captures predictive uncertainty and that combining powerful statistical models and deep learning also delivers a superior speech enhancement performance.
We propose a data-driven mean-curvature solver for the level-set method. This work is the natural extension to $\mathbb{R}^3$ of our two-dimensional strategy in [DOI: 10.1007/s10915-022-01952-2][1] and the hybrid inference system of [DOI: 10.1016/j.jcp.2022.111291][2]. However, in contrast to [1,2], which built resolution-dependent neural-network dictionaries, here we develop a pair of models in $\mathbb{R}^3$, regardless of the mesh size. Our feedforward networks ingest transformed level-set, gradient, and curvature data to fix numerical mean-curvature approximations selectively for interface nodes. To reduce the problem's complexity, we have used the Gaussian curvature to classify stencils and fit our models separately to non-saddle and saddle patterns. Non-saddle stencils are easier to handle because they exhibit a curvature error distribution characterized by monotonicity and symmetry. While the latter has allowed us to train only on half the mean-curvature spectrum, the former has helped us blend the data-driven and the baseline estimations seamlessly near flat regions. On the other hand, the saddle-pattern error structure is less clear; thus, we have exploited no latent information beyond what is known. In this regard, we have trained our models on not only spherical but also sinusoidal and hyperbolic paraboloidal patches. Our approach to building their data sets is systematic but gleans samples randomly while ensuring well-balancedness. We have also resorted to standardization and dimensionality reduction and integrated regularization to minimize outliers. In addition, we leverage curvature rotation/reflection invariance to improve precision at inference time. Several experiments confirm that our proposed system can yield more accurate mean-curvature estimations than modern particle-based interface reconstruction and level-set schemes around under-resolved regions.
Representing and reasoning about uncertainty is crucial for autonomous agents acting in partially observable environments with noisy sensors. Partially observable Markov decision processes (POMDPs) serve as a general framework for representing problems in which uncertainty is an important factor. Online sample-based POMDP methods have emerged as efficient approaches to solving large POMDPs and have been shown to extend to continuous domains. However, these solutions struggle to find long-horizon plans in problems with significant uncertainty. Exploration heuristics can help guide planning, but many real-world settings contain significant task-irrelevant uncertainty that might distract from the task objective. In this paper, we propose STRUG, an online POMDP solver capable of handling domains that require long-horizon planning with significant task-relevant and task-irrelevant uncertainty. We demonstrate our solution on several temporally extended versions of toy POMDP problems as well as robotic manipulation of articulated objects using a neural perception frontend to construct a distribution of possible models. Our results show that STRUG outperforms the current sample-based online POMDP solvers on several tasks.
Temporally consistent depth estimation is crucial for online applications such as augmented reality. While stereo depth estimation has received substantial attention as a promising way to generate 3D information, there is relatively little work focused on maintaining temporal stability. Indeed, based on our analysis, current techniques still suffer from poor temporal consistency. Stabilizing depth temporally in dynamic scenes is challenging due to concurrent object and camera motion. In an online setting, this process is further aggravated because only past frames are available. We present a framework named Consistent Online Dynamic Depth (CODD) to produce temporally consistent depth estimates in dynamic scenes in an online setting. CODD augments per-frame stereo networks with novel motion and fusion networks. The motion network accounts for dynamics by predicting a per-pixel SE3 transformation and aligning the observations. The fusion network improves temporal depth consistency by aggregating the current and past estimates. We conduct extensive experiments and demonstrate quantitatively and qualitatively that CODD outperforms competing methods in terms of temporal consistency and performs on par in terms of per-frame accuracy.
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels. Recently, two-stage self-training methods have achieved significant improvements by self-generating pseudo labels and self-refining anomaly scores with these labels. As the pseudo labels play a crucial role, we propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training. Specifically, we first design a multi-head classification module (each head serves as a classifier) with a diversity loss to maximize the distribution differences of predicted pseudo labels across heads. This encourages the generated pseudo labels to cover as many abnormal events as possible. We then devise an iterative uncertainty pseudo label refinement strategy, which improves not only the initial pseudo labels but also the updated ones obtained by the desired classifier in the second stage. Extensive experimental results demonstrate the proposed method performs favorably against state-of-the-art approaches on the UCF-Crime, TAD, and XD-Violence benchmark datasets.
Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to $90^\circ$. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90$^\circ$, angular speeds up to 750~deg/s, and accelerations up to 10~m/s$^2$.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.