We consider the problem of computing a mixed-strategy generalized Nash equilibrium (MS-GNE) for a class of games where each agent has both continuous and integer decision variables. Specifically, we propose a novel Bregman forward-reflected-backward splitting and design distributed algorithms that exploit the problem structure. Technically, we prove convergence to a variational MS-GNE under mere monotonicity and Lipschitz continuity assumptions, which are typical of continuous GNE problems. Finally, we show the performance of our algorithms via numerical experiments.
We consider the deformation of a geological structure with non-intersecting faults that can be represented by a layered system of viscoelastic bodies satisfying rate- and state-depending friction conditions along the common interfaces. We derive a mathematical model that contains classical Dieterich- and Ruina-type friction as special cases and accounts for possibly large tangential displacements. Semi-discretization in time by a Newmark scheme leads to a coupled system of non-smooth, convex minimization problems for rate and state to be solved in each time step. Additional spatial discretization by a mortar method and piecewise constant finite elements allows for the decoupling of rate and state by a fixed point iteration and efficient algebraic solution of the rate problem by truncated non-smooth Newton methods. Numerical experiments with a spring slider and a layered multiscale system illustrate the behavior of our model as well as the efficiency and reliability of the numerical solver.
Hamilton and Moitra (2021) showed that, in certain regimes, it is not possible to accelerate Riemannian gradient descent in the hyperbolic plane if we restrict ourselves to algorithms which make queries in a (large) bounded domain and which receive gradients and function values corrupted by a (small) amount of noise. We show that acceleration remains unachievable for any deterministic algorithm which receives exact gradient and function-value information (unbounded queries, no noise). Our results hold for the classes of strongly and nonstrongly geodesically convex functions, and for a large class of Hadamard manifolds including hyperbolic spaces and the symmetric space $\mathrm{SL}(n) / \mathrm{SO}(n)$ of positive definite $n \times n$ matrices of determinant one. This cements a surprising gap between the complexity of convex optimization and geodesically convex optimization: for hyperbolic spaces, Riemannian gradient descent is optimal on the class of smooth and and strongly geodesically convex functions, in the regime where the condition number scales with the radius of the optimization domain. The key idea for proving the lower bound consists of perturbing the hard functions of Hamilton and Moitra (2021) with sums of bump functions chosen by a resisting oracle.
Common policy gradient methods rely on the maximization of a sequence of surrogate functions. In recent years, many such surrogate functions have been proposed, most without strong theoretical guarantees, leading to algorithms such as TRPO, PPO or MPO. Rather than design yet another surrogate function, we instead propose a general framework (FMA-PG) based on functional mirror ascent that gives rise to an entire family of surrogate functions. We construct surrogate functions that enable policy improvement guarantees, a property not shared by most existing surrogate functions. Crucially, these guarantees hold regardless of the choice of policy parameterization. Moreover, a particular instantiation of FMA-PG recovers important implementation heuristics (e.g., using forward vs reverse KL divergence) resulting in a variant of TRPO with additional desirable properties. Via experiments on simple bandit problems, we evaluate the algorithms instantiated by FMA-PG. The proposed framework also suggests an improved variant of PPO, whose robustness and efficiency we empirically demonstrate on the MuJoCo suite.
In this article we develop the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for elliptic partial differential equations with inhomogeneous Dirichlet, Neumann, and Robin boundary conditions, and the high contrast property emerges from the coefficients of elliptic operators and Robin boundary conditions. By careful construction of multiscale bases of the CEM-GMsFEM, we introduce two operators $\mathcal{D}^m$ and $\mathcal{N}^m$ which are used to handle inhomogeneous Dirichlet and Neumann boundary values and are also proved to converge independently of contrast ratios as enlarging oversampling regions. We provide a priori error estimate and show that oversampling layers are the key factor in controlling numerical errors. A series of experiments are conducted, and those results reflect the reliability of our methods even with high contrast ratios.
We propose a generalization of the Wasserstein distance of order 1 to the quantum states of $n$ qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz observables. Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.
We develop two adaptive discretization algorithms for convex semi-infinite optimization, which terminate after finitely many iterations at approximate solutions of arbitrary precision. In particular, they terminate at a feasible point of the considered optimization problem. Compared to the existing finitely feasible algorithms for general semi-infinite optimization problems, our algorithms work with considerably smaller discretizations and are thus computationally favorable. Also, our algorithms terminate at approximate solutions of arbitrary precision, while for general semi-infinite optimization problems the best possible approximate-solution precision can be arbitrarily bad. All occurring finite optimization subproblems in our algorithms have to be solved only approximately, and continuity is the only regularity assumption on our objective and constraint functions. Applications to parametric and non-parametric regression problems under shape constraints are discussed.
This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. I introduce the concept of Dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero Time complexity, zero Space complexity, and an infinite Dimensional complexity. This algorithm is then used to generate the number line.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.