Autoregressive (AR) models have reformulated image generation as next-token prediction, demonstrating remarkable potential and emerging as strong competitors to diffusion models. However, control-to-image generation, akin to ControlNet, remains largely unexplored within AR models. Although a natural approach, inspired by advancements in Large Language Models, is to tokenize control images into tokens and prefill them into the autoregressive model before decoding image tokens, it still falls short in generation quality compared to ControlNet and suffers from inefficiency. To this end, we introduce ControlAR, an efficient and effective framework for integrating spatial controls into autoregressive image generation models. Firstly, we explore control encoding for AR models and propose a lightweight control encoder to transform spatial inputs (e.g., canny edges or depth maps) into control tokens. Then ControlAR exploits the conditional decoding method to generate the next image token conditioned on the per-token fusion between control and image tokens, similar to positional encodings. Compared to prefilling tokens, using conditional decoding significantly strengthens the control capability of AR models but also maintains the model's efficiency. Furthermore, the proposed ControlAR surprisingly empowers AR models with arbitrary-resolution image generation via conditional decoding and specific controls. Extensive experiments can demonstrate the controllability of the proposed ControlAR for the autoregressive control-to-image generation across diverse inputs, including edges, depths, and segmentation masks. Furthermore, both quantitative and qualitative results indicate that ControlAR surpasses previous state-of-the-art controllable diffusion models, e.g., ControlNet++. Code, models, and demo will soon be available at //github.com/hustvl/ControlAR.
Smart contracts, primarily written in Solidity, are integral to blockchain software applications, yet precise analysis and maintenance are hindered by the limitations of existing differencing tools. We introduce SoliDiffy, a novel Abstract Syntax Tree (AST) differencing tool specifically designed for Solidity. SoliDiffy enables fine-grained analysis by generating accurate and concise edit scripts of smart contracts, making it ideal for downstream tasks such as vulnerability detection, automated code repair, and code reviews. Our comprehensive evaluation on a large dataset of real-world Solidity contracts demonstrates that SoliDiffy delivers shorter and more precise edit scripts compared to state-of-the-art tools, while performing consistently in complex contract modifications. SoliDiffy is made publicly available at //github.com/mojtaba-eshghie/SoliDiffy.
3D Gaussian Splatting (3DGS) has recently transformed photorealistic reconstruction, achieving high visual fidelity and real-time performance. However, rendering quality significantly deteriorates when test views deviate from the camera angles used during training, posing a major challenge for applications in immersive free-viewpoint rendering and navigation. In this work, we conduct a comprehensive evaluation of 3DGS and related novel view synthesis methods under out-of-distribution (OOD) test camera scenarios. By creating diverse test cases with synthetic and real-world datasets, we demonstrate that most existing methods, including those incorporating various regularization techniques and data-driven priors, struggle to generalize effectively to OOD views. To address this limitation, we introduce SplatFormer, the first point transformer model specifically designed to operate on Gaussian splats. SplatFormer takes as input an initial 3DGS set optimized under limited training views and refines it in a single forward pass, effectively removing potential artifacts in OOD test views. To our knowledge, this is the first successful application of point transformers directly on 3DGS sets, surpassing the limitations of previous multi-scene training methods, which could handle only a restricted number of input views during inference. Our model significantly improves rendering quality under extreme novel views, achieving state-of-the-art performance in these challenging scenarios and outperforming various 3DGS regularization techniques, multi-scene models tailored for sparse view synthesis, and diffusion-based frameworks.
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.
Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at \url{//tiger-ai-lab.github.io/OmniEdit/}
Large language models (LLMs) have achieved impressive performance in code generation recently, offering programmers revolutionary assistance in software development. However, due to the auto-regressive nature of LLMs, they are susceptible to error accumulation during code generation. Once an error is produced, LLMs can merely continue to generate the subsequent code conditioned on it, given their inability to adjust previous outputs. Existing LLM-based approaches typically consider post-revising after code generation, leading to the challenging resolution of accumulated errors and the significant wastage of resources. Ideally, LLMs should rollback and resolve the occurred error in time during code generation, rather than proceed on the basis of the error and wait for post-revising after generation. In this paper, we propose ROCODE, which integrates the backtracking mechanism and program analysis into LLMs for code generation. Specifically, we employ program analysis to perform incremental error detection during the generation process. When an error is detected, the backtracking mechanism is triggered to priming rollback strategies and constraint regeneration, thereby eliminating the error early and ensuring continued generation on the correct basis. Experiments on multiple code generation benchmarks show that ROCODE can significantly reduce the errors generated by LLMs, with a compilation pass rate of 99.1%. The test pass rate is improved by up to 23.8% compared to the best baseline approach. Compared to the post-revising baseline, the token cost is reduced by 19.3%. Moreover, our approach is model-agnostic and achieves consistent improvements across nine representative LLMs.
With the development of large language models (LLMs), the sequence length of these models continues to increase, drawing significant attention to long-context language models. However, the evaluation of these models has been primarily limited to their capabilities, with a lack of research focusing on their safety. Existing work, such as ManyShotJailbreak, has to some extent demonstrated that long-context language models can exhibit safety concerns. However, the methods used are limited and lack comprehensiveness. In response, we introduce \textbf{LongSafetyBench}, the first benchmark designed to objectively and comprehensively evaluate the safety of long-context models. LongSafetyBench consists of 10 task categories, with an average length of 41,889 words. After testing eight long-context language models on LongSafetyBench, we found that existing models generally exhibit insufficient safety capabilities. The proportion of safe responses from most mainstream long-context LLMs is below 50\%. Moreover, models' safety performance in long-context scenarios does not always align with that in short-context scenarios. Further investigation revealed that long-context models tend to overlook harmful content within lengthy texts. We also proposed a simple yet effective solution, allowing open-source models to achieve performance comparable to that of top-tier closed-source models. We believe that LongSafetyBench can serve as a valuable benchmark for evaluating the safety capabilities of long-context language models. We hope that our work will encourage the broader community to pay attention to the safety of long-context models and contribute to the development of solutions to improve the safety of long-context LLMs.
Category-agnostic pose estimation (CAPE) has traditionally relied on support images with annotated keypoints, a process that is often cumbersome and may fail to fully capture the necessary correspondences across diverse object categories. Recent efforts have begun exploring the use of text-based queries, where the need for support keypoints is eliminated. However, the optimal use of textual descriptions for keypoints remains an underexplored area. In this work, we introduce CapeLLM, a novel approach that leverages a text-based multimodal large language model (MLLM) for CAPE. Our method only employs query image and detailed text descriptions as an input to estimate category-agnostic keypoints. We conduct extensive experiments to systematically explore the design space of LLM-based CAPE, investigating factors such as choosing the optimal description for keypoints, neural network architectures, and training strategies. Thanks to the advanced reasoning capabilities of the pre-trained MLLM, CapeLLM demonstrates superior generalization and robust performance. Our approach sets a new state-of-the-art on the MP-100 benchmark in the challenging 1-shot setting, marking a significant advancement in the field of category-agnostic pose estimation.
Quantization of foundational models (FMs) is significantly more challenging than traditional DNNs due to the emergence of large magnitude features called outliers. Existing outlier-aware algorithm/architecture co-design techniques either use mixed-precision, retaining outliers at high precision but compromise hardware efficiency, or quantize inliers and outliers at the same precision, improving hardware efficiency at the cost of accuracy. To address this mutual exclusivity, in this paper, we propose MicroScopiQ, a novel co-design technique that leverages pruning to complement outlier-aware quantization. MicroScopiQ retains outliers at higher precision while pruning a certain fraction of least important weights to distribute the additional outlier bits; ensuring high accuracy, aligned memory and hardware efficiency. We design a high-throughput, low overhead accelerator architecture composed of simple multi-precision INT processing elements and a novel network-on-chip called ReCoN that efficiently abstracts the complexity of supporting high-precision outliers. Additionally, unlike existing alternatives, MicroScopiQ does not assume any locality of outlier weights, enabling applicability to a broad range of FMs. Extensive experiments across various quantization settings show that MicroScopiQ achieves SoTA quantization performance while simultaneously improving inference performance by 3x and reducing energy by 2x over existing alternatives.
Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.