This work proposes a model-reduction approach for the material point method on nonlinear manifolds. Our technique approximates the $\textit{kinematics}$ by approximating the deformation map using an implicit neural representation that restricts deformation trajectories to reside on a low-dimensional manifold. By explicitly approximating the deformation map, its spatiotemporal gradients -- in particular the deformation gradient and the velocity -- can be computed via analytical differentiation. In contrast to typical model-reduction techniques that construct a linear or nonlinear manifold to approximate the (finite number of) degrees of freedom characterizing a given spatial discretization, the use of an implicit neural representation enables the proposed method to approximate the $\textit{continuous}$ deformation map. This allows the kinematic approximation to remain agnostic to the discretization. Consequently, the technique supports dynamic discretizations -- including resolution changes -- during the course of the online reduced-order-model simulation. To generate $\textit{dynamics}$ for the generalized coordinates, we propose a family of projection techniques. At each time step, these techniques: (1) Calculate full-space kinematics at quadrature points, (2) Calculate the full-space dynamics for a subset of `sample' material points, and (3) Calculate the reduced-space dynamics by projecting the updated full-space position and velocity onto the low-dimensional manifold and tangent space, respectively. We achieve significant computational speedup via hyper-reduction that ensures all three steps execute on only a small subset of the problem's spatial domain. Large-scale numerical examples with millions of material points illustrate the method's ability to gain an order of magnitude computational-cost saving -- indeed $\textit{real-time simulations}$ -- with negligible errors.
Since the seminal works of Strassen and Valiant it has been a central theme in algebraic complexity theory to understand the relative complexity of algebraic problems, that is, to understand which algebraic problems (be it bilinear maps like matrix multiplication in Strassen's work, or the determinant and permanent polynomials in Valiant's) can be reduced to each other (under the appropriate notion of reduction). In this paper we determine precisely how many independent scalar multiplications can be reduced to a given bilinear map (this number is called the subrank, and extends the concept of matrix diagonalization to tensors), for essentially all (i.e. generic) bilinear maps. Namely, we prove for a generic bilinear map $T : V \times V \to V$ where $\dim(V) = n$ that $\theta(\sqrt{n})$ independent scalar multiplications can be reduced to $T$. Our result significantly improves on the previous upper bound from the work of Strassen (1991) and B\"urgisser (1990) which was $n^{2/3 + o(1)}$. Our full result is much more general and applies not only to bilinear maps and 3-tensors but also to $k$-tensors, for which we find that the generic subrank is $\theta(n^{1/(k-1)})$. Moreover, as an application we prove that the subrank is not additive under the direct sum. The subrank plays a central role in several areas of complexity theory (matrix multiplication algorithms, barrier results) and combinatorics (e.g., the cap set problem and sunflower problem). As a consequence of our result we obtain several large separations between the subrank and tensor methods that have received much interest recently, notably the slice rank (Tao, 2016), analytic rank (Gowers--Wolf, 2011; Lovett, 2018; Bhrushundi--Harsha--Hatami--Kopparty--Kumar, 2020), geometric rank (Kopparty--Moshkovitz--Zuiddam, 2020), and G-stable rank (Derksen, 2020).
Neuromorphic neural network processors, in the form of compute-in-memory crossbar arrays of memristors, or in the form of subthreshold analog and mixed-signal ASICs, promise enormous advantages in compute density and energy efficiency for NN-based ML tasks. However, these technologies are prone to computational non-idealities, due to process variation and intrinsic device physics. This degrades the task performance of networks deployed to the processor, by introducing parameter noise into the deployed model. While it is possible to calibrate each device, or train networks individually for each processor, these approaches are expensive and impractical for commercial deployment. Alternative methods are therefore needed to train networks that are inherently robust against parameter variation, as a consequence of network architecture and parameters. We present a new adversarial network optimisation algorithm that attacks network parameters during training, and promotes robust performance during inference in the face of parameter variation. Our approach introduces a regularization term penalising the susceptibility of a network to weight perturbation. We compare against previous approaches for producing parameter insensitivity such as dropout, weight smoothing and introducing parameter noise during training. We show that our approach produces models that are more robust to targeted parameter variation, and equally robust to random parameter variation. Our approach finds minima in flatter locations in the weight-loss landscape compared with other approaches, highlighting that the networks found by our technique are less sensitive to parameter perturbation. Our work provides an approach to deploy neural network architectures to inference devices that suffer from computational non-idealities, with minimal loss of performance. ...
Whilst lattice-based cryptosystems are believed to be resistant to quantum attack, they are often forced to pay for that security with inefficiencies in implementation. This problem is overcome by ring- and module-based schemes such as Ring-LWE or Module-LWE, whose keysize can be reduced by exploiting its algebraic structure, allowing for faster computations. Many rings may be chosen to define such cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing for easy multiplication, are the community standard. However, there is still much uncertainty as to whether this structure may be exploited to an adversary's benefit. In this paper, we show that the decomposition group of a cyclotomic ring of arbitrary conductor can be utilised to significantly decrease the dimension of the ideal (or module) lattice required to solve a given instance of SVP. Moreover, we show that there exist a large number of rational primes for which, if the prime ideal factors of an ideal lie over primes of this form, give rise to an "easy" instance of SVP. It is important to note that the work on ideal SVP does not break Ring-LWE, since its security reduction is from worst case ideal SVP to average case Ring-LWE, and is one way.
Fiber metal laminates (FML) are composite structures consisting of metals and fiber reinforced plastics (FRP) which have experienced an increasing interest as the choice of materials in aerospace and automobile industries. Due to a sophisticated built up of the material, not only the design and production of such structures is challenging but also its damage detection. This research work focuses on damage identification in FML with guided ultrasonic waves (GUW) through an inverse approach based on the Bayesian paradigm. As the Bayesian inference approach involves multiple queries of the underlying system, a parameterized reduced-order model (ROM) is used to closely approximate the solution with considerably less computational cost. The signals measured by the embedded sensors and the ROM forecasts are employed for the localization and characterization of damage in FML. In this paper, a Markov Chain Monte-Carlo (MCMC) based Metropolis-Hastings (MH) algorithm and an Ensemble Kalman filtering (EnKF) technique are deployed to identify the damage. Numerical tests illustrate the approaches and the results are compared in regard to accuracy and efficiency. It is found that both methods are successful in multivariate characterization of the damage with a high accuracy and were also able to quantify their associated uncertainties. The EnKF distinguishes itself with the MCMC-MH algorithm in the matter of computational efficiency. In this application of identifying the damage, the EnKF is approximately thrice faster than the MCMC-MH.
A single-step high-order implicit time integration scheme with controllable numerical dissipation at high frequency is presented for the transient analysis of structural dynamic problems. The amount of numerical dissipation is controlled by a user-specified value of the spectral radius $\rho_\infty$ in the high frequency limit. Using this user-specified parameter as a weight factor, a Pad\'e expansion of the matrix exponential solution of the equation of motion is constructed by mixing the diagonal and sub-diagonal expansions. An efficient time stepping scheme is designed where systems of equations similar in complexity to the standard Newmark method are solved recursively. It is shown that the proposed high-order scheme achieves high-frequency dissipation while minimizing low-frequency dissipation and period errors. The effectiveness of dissipation control and efficiency of the scheme are demonstrated with numerical examples. A simple recommendation on the choice of the controlling parameter and time step size is provided. The source code written in MATLAB and FORTRAN is available for download at: //github.com/ChongminSong/HighOrderTimeIntegration.
In this paper we elaborate an extension of rotation-based iterative Gaussianization, RBIG, which makes image Gaussianization possible. Although RBIG has been successfully applied to many tasks, it is limited to medium dimensionality data (on the order of a thousand dimensions). In images its application has been restricted to small image patches or isolated pixels, because rotation in RBIG is based on principal or independent component analysis and these transformations are difficult to learn and scale. Here we present the \emph{Convolutional RBIG}: an extension that alleviates this issue by imposing that the rotation in RBIG is a convolution. We propose to learn convolutional rotations (i.e. orthonormal convolutions) by optimising for the reconstruction loss between the input and an approximate inverse of the transformation using the transposed convolution operation. Additionally, we suggest different regularizers in learning these orthonormal convolutions. For example, imposing sparsity in the activations leads to a transformation that extends convolutional independent component analysis to multilayer architectures. We also highlight how statistical properties of the data, such as multivariate mutual information, can be obtained from \emph{Convolutional RBIG}. We illustrate the behavior of the transform with a simple example of texture synthesis, and analyze its properties by visualizing the stimuli that maximize the response in certain feature and layer.
In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.
The Volume-Averaged Navier-Stokes equations are used to study fluid flow in the presence of fixed or moving solids such as packed or fluidized beds. We develop a high-order finite element solver using both forms A and B of these equations. We introduce tailored stabilization techniques to prevent oscillations in regions of sharp gradients, to relax the Ladyzhenskaya-Babuska-Brezzi inf-sup condition, and to enhance the local mass conservation and the robustness of the formulation. We calculate the void fraction using the Particle Centroid Method. Using different drag models, we calculate the drag force exerted by the solids on the fluid. We implement the method of manufactured solution to verify our solver. We demonstrate that the model preserves the order of convergence of the underlying finite element discretization. Finally, we simulate gas flow through a randomly packed bed and study the pressure drop and mass conservation properties to validate our model.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.