This paper introduces a novel goodness-of-fit test technique for parametric conditional distributions. The proposed tests are based on a residual marked empirical process, for which we develop a conditional Principal Component Analysis. The obtained components provide a basis for various types of new tests in addition to the omnibus one. Component tests that based on each component serve as experts in detecting certain directions. Smooth tests that assemble a few components are also of great use in practice. To further improve testing efficiency, we introduce a component selection approach, aiming to identify the most contributory components. The finite sample performance of the proposed tests is illustrated through Monte Carlo experiments.
This paper explores uncertainty quantification (UQ) as an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation from magnetic resonance imaging (MRI) scans of multiple sclerosis (MS) patients. Our study focuses on two principal aspects of uncertainty in structured output segmentation tasks. Firstly, we postulate that a good uncertainty measure should indicate predictions likely to be incorrect with high uncertainty values. Second, we investigate the merit of quantifying uncertainty at different anatomical scales (voxel, lesion, or patient). We hypothesize that uncertainty at each scale is related to specific types of errors. Our study aims to confirm this relationship by conducting separate analyses for in-domain and out-of-domain settings. Our primary methodological contributions are (i) the development of novel measures for quantifying uncertainty at lesion and patient scales, derived from structural prediction discrepancies, and (ii) the extension of an error retention curve analysis framework to facilitate the evaluation of UQ performance at both lesion and patient scales. The results from a multi-centric MRI dataset of 334 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales compared to measures that average voxel-scale uncertainty values. We provide the UQ protocols code at //github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs.
Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%
Image-guided object assembly represents a burgeoning research topic in computer vision. This paper introduces a novel task: translating multi-view images of a structural 3D model (for example, one constructed with building blocks drawn from a 3D-object library) into a detailed sequence of assembly instructions executable by a robotic arm. Fed with multi-view images of the target 3D model for replication, the model designed for this task must address several sub-tasks, including recognizing individual components used in constructing the 3D model, estimating the geometric pose of each component, and deducing a feasible assembly order adhering to physical rules. Establishing accurate 2D-3D correspondence between multi-view images and 3D objects is technically challenging. To tackle this, we propose an end-to-end model known as the Neural Assembler. This model learns an object graph where each vertex represents recognized components from the images, and the edges specify the topology of the 3D model, enabling the derivation of an assembly plan. We establish benchmarks for this task and conduct comprehensive empirical evaluations of Neural Assembler and alternative solutions. Our experiments clearly demonstrate the superiority of Neural Assembler.
We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo's vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. The clients in each silo perform multiple local gradient steps before sharing updates with their hub to reduce communication overhead. Each hub adjusts its coordinates by averaging its workers' updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions and the number of local updates. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.
Differentially private federated learning is crucial for maintaining privacy in distributed environments. This paper investigates the challenges of high-dimensional estimation and inference under the constraints of differential privacy. First, we study scenarios involving an untrusted central server, demonstrating the inherent difficulties of accurate estimation in high-dimensional problems. Our findings indicate that the tight minimax rates depends on the high-dimensionality of the data even with sparsity assumptions. Second, we consider a scenario with a trusted central server and introduce a novel federated estimation algorithm tailored for linear regression models. This algorithm effectively handles the slight variations among models distributed across different machines. We also propose methods for statistical inference, including coordinate-wise confidence intervals for individual parameters and strategies for simultaneous inference. Extensive simulation experiments support our theoretical advances, underscoring the efficacy and reliability of our approaches.
This paper introduces a new parallel run-time for QuickCheck, a Haskell library and EDSL for specifying and randomly testing properties of programs. The new run-time can run multiple tests for a single property in parallel, using the available cores. Moreover, if a counterexample is found, the run-time can also shrink the test case in parallel, implementing a parallel search for a locally minimal counterexample. Our experimental results show a 3--9$\times$ speed-up for testing QuickCheck properties on a variety of heavy-weight benchmark problems. We also evaluate two different shrinking strategies; deterministic shrinking, which guarantees to produce the same minimal test case as standard sequential shrinking, and greedy shrinking, which does not have this guarantee but still produces a locally minimal test case, and is faster in practice.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.