亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in integrating external tools with Large Language Models (LLMs) have opened new frontiers, with applications in mathematical reasoning, code generators, and smart assistants. However, existing methods, relying on simple one-time retrieval strategies, fall short on effectively and accurately shortlisting relevant tools. This paper introduces a novel PLUTO (Planning, Learning, and Understanding for TOols) approach, encompassing `Plan-and-Retrieve (P&R)` and `Edit-and-Ground (E&G)` paradigms. The P&R paradigm consists of a neural retrieval module for shortlisting relevant tools and an LLM-based query planner that decomposes complex queries into actionable tasks, enhancing the effectiveness of tool utilization. The E&G paradigm utilizes LLMs to enrich tool descriptions based on user scenarios, bridging the gap between user queries and tool functionalities. Experiment results demonstrate that these paradigms significantly improve the recall and NDCG in tool retrieval tasks, significantly surpassing current state-of-the-art models.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · MoDELS · LLaMA · 代碼 · 語言模型化 ·
2024 年 5 月 24 日

Recent advancements in Large Language Models (LLMs) and their utilization in code generation tasks have significantly reshaped the field of software development. Despite the remarkable efficacy of code completion solutions in mainstream programming languages, their performance lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code completion tool, and proposes a set of task-specific optimizations leveraging Meta's open-source model Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this research is used to perform a series of experiments through which the impact of various prompt-engineering and fine-tuning techniques on the Code Llama model's performance is analyzed. The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution's underlying Codex model. Additionally, this research proposes an enhancement to a widely used code infilling training technique, addressing the issue of underperformance when the model is prompted with context sizes smaller than those used during training.

This work introduces a novel Text-Guided Time Series Forecasting (TGTSF) task. By integrating textual cues, such as channel descriptions and dynamic news, TGTSF addresses the critical limitations of traditional methods that rely purely on historical data. To support this task, we propose TGForecaster, a robust baseline model that fuses textual cues and time series data using cross-attention mechanisms. We then present four meticulously curated benchmark datasets to validate the proposed framework, ranging from simple periodic data to complex, event-driven fluctuations. Our comprehensive evaluations demonstrate that TGForecaster consistently achieves state-of-the-art performance, highlighting the transformative potential of incorporating textual information into time series forecasting. This work not only pioneers a novel forecasting task but also establishes a new benchmark for future research, driving advancements in multimodal data integration for time series models.

This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: //github.com/billpsomas/rscir

This work examines whether decoder-only Transformers such as LLaMA, which were originally designed for large language models (LLMs), can be adapted to the computer vision field. We first "LLaMAfy" a standard ViT step-by-step to align with LLaMA's architecture, and find that directly applying a casual mask to the self-attention brings an attention collapse issue, resulting in the failure to the network training. We suggest to reposition the class token behind the image tokens with a post-sequence class token technique to overcome this challenge, enabling causal self-attention to efficiently capture the entire image's information. Additionally, we develop a soft mask strategy that gradually introduces a casual mask to the self-attention at the onset of training to facilitate the optimization behavior. The tailored model, dubbed as image LLaMA (iLLaMA), is akin to LLaMA in architecture and enables direct supervised learning. Its causal self-attention boosts computational efficiency and learns complex representation by elevating attention map ranks. iLLaMA rivals the performance with its encoder-only counterparts, achieving 75.1% ImageNet top-1 accuracy with only 5.7M parameters. Scaling the model to ~310M and pre-training on ImageNet-21K further enhances the accuracy to 86.0%. Extensive experiments demonstrate iLLaMA's reliable properties: calibration, shape-texture bias, quantization compatibility, ADE20K segmentation and CIFAR transfer learning. We hope our study can kindle fresh views to visual model design in the wave of LLMs. Pre-trained models and codes are available here.

We establish various complexity results for the entailment problem between formulas in Separation Logic with user-defined predicates denoting recursive data structures. The considered fragments are characterized by syntactic conditions on the inductive rules that define the semantics of the predicates. We focus on so-called P-rules, which are similar to (but simpler than) the PCE rules introduced by Iosif et al. in 2013. In particular, for a specific fragment where predicates are defined by so-called loc-deterministic inductive rules, we devise a sound and complete cyclic proof procedure running in polynomial time. Several complexity lower bounds are provided, showing that any relaxing of the provided conditions makes the problem intractable.

Recent advancements in event argument extraction (EAE) involve incorporating beneficial auxiliary information into models during training and inference, such as retrieved instances and event templates. Additionally, some studies introduce learnable prefix vectors to models. These methods face three challenges: (1) insufficient utilization of relevant event instances due to deficiencies in retrieval; (2) neglect of important information provided by relevant event templates; (3) the advantages of prefixes are constrained due to their inability to meet the specific informational needs of EAE. In this work, we propose DEGAP, which addresses the above challenges through two simple yet effective components: (1) dual prefixes, where the instance-oriented prefix and template-oriented prefix are trained to learn information from different event instances and templates, respectively, and then provide relevant information as cues to EAE model without retrieval; (2) event-guided adaptive gating mechanism, which guides the prefixes based on the target event to fully leverage their advantages. Extensive experiments demonstrate that our method achieves new state-of-the-art performance on four datasets (ACE05, RAMS, WIKIEVENTS, and MLEE). Further analysis verifies the importance of the proposed design and the effectiveness of the main components.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas, and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.

北京阿比特科技有限公司