亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stroke patients with upper limb motor impairments are re-acclimated to their corresponding motor functionalities through therapeutic interventions. Physiotherapists typically assess these functionalities using various qualitative protocols. However, such assessments are often biased and prone to errors, reducing rehabilitation efficacy. Therefore, real-time visualization and quantitative analysis of performance metrics, such as range of motion, repetition rate, velocity, etc., are crucial for accurate progress assessment. This study introduces Renovo, a working prototype of a wearable motion sensor-based assistive technology that assists physiotherapists with real-time visualization of these metrics. We also propose a novel mathematical framework for generating quantitative performance scores without relying on any machine learning model. We present the results of a three-week pilot study involving 16 stroke patients with upper limb disabilities, evaluated across three successive sessions at one-week intervals by both Renovo and physiotherapists (N=5). Results suggest that while the expertise of a physiotherapist is irreplaceable, Renovo can assist in the decision-making process by providing valuable quantitative information.

相關內容

Quantum transport calculations are essential for understanding and designing nanoelectronic devices, yet the trade-off between accuracy and computational efficiency has long limited their practical applications. We present a general framework that combines the deep learning tight-binding Hamiltonian (DeePTB) approach with the non-equilibrium Green's Function (NEGF) method, enabling efficient quantum transport calculations while maintaining first-principles accuracy. We demonstrate the capabilities of the DeePTB-NEGF framework through two representative applications: comprehensive simulation of break junction systems, where conductance histograms show good agreement with experimental measurements in both metallic contact and single-molecule junction cases; and simulation of carbon nanotube field effect transistors through self-consistent NEGF-Poisson calculations, capturing essential physics including the electrostatic potential and transfer characteristic curves under finite bias conditions. This framework bridges the gap between first-principles accuracy and computational efficiency, providing a powerful tool for high-throughput quantum transport simulations across different scales in nanoelectronics.

Modern software for propositional satisfiability problems gives a powerful automated reasoning toolkit, capable of outputting not only a satisfiable/unsatisfiable signal but also a justification of unsatisfiability in the form of resolution proof (or a more expressive proof), which is commonly used for verification purposes. Empirically, modern SAT solvers produce relatively short proofs, however, there are no inherent guarantees that these proofs cannot be significantly reduced. This paper proposes a novel branch-and-bound algorithm for finding the shortest resolution proofs; to this end, we introduce a layer list representation of proofs that groups clauses by their level of indirection. As we show, this representation breaks all permutational symmetries, thereby improving upon the state-of-the-art symmetry-breaking and informing the design of a novel workflow for proof minimization. In addition to that, we design pruning procedures that reason on proof length lower bound, clause subsumption, and dominance. Our experiments suggest that the proofs from state-of-the-art solvers could be shortened by 30-60% on the instances from SAT Competition 2002 and by 25-50% on small synthetic formulas. When treated as an algorithm for finding the shortest proof, our approach solves twice as many instances as the previous work based on SAT solving and reduces the time to optimality by orders of magnitude for the instances solved by both approaches.

Instrumental variables (IVs) are widely used to estimate causal effects in the presence of unobserved confounding between exposure and outcome. An IV must affect the outcome exclusively through the exposure and be unconfounded with the outcome. We present a framework for relaxing either or both of these strong assumptions with tuneable and interpretable budget constraints. Our algorithm returns a feasible set of causal effects that can be identified exactly given relevant covariance parameters. The feasible set may be disconnected but is a finite union of convex subsets. We discuss conditions under which this set is sharp, i.e., contains all and only effects consistent with the background assumptions and the joint distribution of observable variables. Our method applies to a wide class of semiparametric models, and we demonstrate how its ability to select specific subsets of instruments confers an advantage over convex relaxations in both linear and nonlinear settings. We also adapt our algorithm to form confidence sets that are asymptotically valid under a common statistical assumption from the Mendelian randomization literature.

Cardinality sketches are compact data structures for representing sets or vectors, enabling efficient approximation of their cardinality (or the number of nonzero entries). These sketches are space-efficient, typically requiring only logarithmic storage relative to input size, and support incremental updates, allowing for dynamic modifications. A critical property of many cardinality sketches is composability, meaning that the sketch of a union of sets can be computed from individual sketches. Existing designs typically provide strong statistical guarantees, accurately answering an exponential number of queries in terms of sketch size $k$. However, these guarantees degrade to quadratic in $k$ when queries are adaptive and may depend on previous responses. Prior works on statistical queries (Steinke and Ullman, 2015) and specific MinHash cardinality sketches (Ahmadian and Cohen, 2024) established that the quadratic bound on the number of adaptive queries is, in fact, unavoidable. In this work, we develop a unified framework that generalizes these results across broad classes of cardinality sketches. We show that any union-composable sketching map is vulnerable to attack with $\tilde{O}(k^4)$ queries and, if the sketching map is also monotone (as for MinHash and statistical queries), we obtain a tight bound of $\tilde{O}(k^2)$ queries. Additionally, we demonstrate that linear sketches over the reals $\mathbb{R}$ and fields $\mathbb{F}_p$ can be attacked using $\tilde{O}(k^2)$ adaptive queries, which is optimal and strengthens some of the recent results by Gribelyuk et al. (2024), which required a larger polynomial number of rounds for such matrices.

Sandboxes and other dynamic analysis processes are prevalent in malware detection systems nowadays to enhance the capability of detecting 0-day malware. Therefore, techniques of anti-dynamic analysis (TADA) are prevalent in modern malware samples, and sandboxes can suffer from false negatives and analysis failures when analyzing the samples with TADAs. In such cases, human reverse engineers will get involved in conducting dynamic analysis manually (i.e., debugging, patching), which in turn also gets obstructed by TADAs. In this work, we propose a Large Language Model (LLM) based workflow that can pinpoint the location of the TADA implementation in the code, to help reverse engineers place breakpoints used in debugging. Our evaluation shows that we successfully identified the locations of 87.80% known TADA implementations adopted from public repositories. In addition, we successfully pinpoint the locations of TADAs in 4 well-known malware samples that are documented in online malware analysis blogs.

Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative $5.0$% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with $15.5$% to $27.6$% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.

We propose a data-driven pressure distribution rendering method that uses the interpolation of experimentally obtained pressure values. The pressure data were collected using a pressure sensor array. The prediction was performed using linear interpolation, assuming that the pressure distribution is dependent on pushing displacement and contact angle. Leap Motion Controller was used to implement the prediction based on user input. The proposed prediction model was found to be fast and reproduce the measured data well.

Pain sensation presentation with movable sensory position is important to imitate the pain caused by objects in motion and the pain corresponding to a person's movements. We aimed at proposing a novel dynamic pain sensation experience, called DynaPain. DynaPain was achieved by the non-contact thermal grill illusion and the apparent movement. The demonstration provided the dynamic heat and pain experience through interaction with a flame beetle moving on the arm.

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司