Adaptive enrichment allows for pre-defined patient subgroups of interest to be investigated throughout the course of a clinical trial. Many trials which measure a long-term time-to-event endpoint often also routinely collect repeated measures on biomarkers which may be predictive of the primary endpoint. Although these data may not be leveraged directly to support subgroup selection decisions and early stopping decisions, we aim to make greater use of these data to increase efficiency and improve interim decision making. In this work, we present a joint model for longitudinal and time-to-event data and two methods for creating standardised statistics based on this joint model. We can use the estimates to define enrichment rules and efficacy and futility early stopping rules for a flexible efficient clinical trial with possible enrichment. Under this framework, we show asymptotically that the familywise error rate is protected in the strong sense. To assess the results, we consider a trial for the treatment of metastatic breast cancer where repeated ctDNA measurements are available and the subgroup criteria is defined by patients' ER and HER2 status. Using simulation, we show that incorporating biomarker information leads to accurate subgroup identification and increases in power.
As autonomous vehicles (AVs) become more prevalent on public roads, they will inevitably interact with human-driven vehicles (HVs) in mixed traffic scenarios. To ensure safe interactions between AVs and HVs, it is crucial to account for the uncertain behaviors of HVs when developing control strategies for AVs. In this paper, we propose an efficient learning-based modeling approach for HVs that combines a first-principles model with a Gaussian process (GP) learning-based component. The GP model corrects the velocity prediction of the first-principles model and estimates its uncertainty. Utilizing this model, a model predictive control (MPC) strategy, referred to as GP-MPC, was designed to enhance the safe control of a mixed vehicle platoon by integrating the uncertainty assessment into the distance constraint. We compare our GP-MPC strategy with a baseline MPC that uses only the first-principles model in simulation studies. We show that our GP-MPC strategy provides more robust safe distance guarantees and enables more efficient travel behaviors (higher travel speeds) for all vehicles in the mixed platoon. Moreover, by incorporating a sparse GP technique in HV modeling and a dynamic GP prediction in MPC, we achieve an average computation time for GP-MPC at each time step that is only 5% longer than the baseline MPC, which is approximately 100 times faster than our previous work that did not use these approximations. This work demonstrates how learning-based modeling of HVs can enhance safety and efficiency in mixed traffic involving AV-HV interaction.
The deep neural network (DNN) models for object detection using camera images are widely adopted in autonomous vehicles. However, DNN models are shown to be susceptible to adversarial image perturbations. In the existing methods of generating the adversarial image perturbations, optimizations take each incoming image frame as the decision variable to generate an image perturbation. Therefore, given a new image, the typically computationally-expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while considering the underlying physical dynamics of autonomous vehicles, their mission, and the environment. We propose a multi-level stochastic optimization framework that monitors an attacker's capability of generating the adversarial perturbations. Based on this capability level, a binary decision attack/not attack is introduced to enhance the effectiveness of the attacker. We evaluate our proposed multi-level image attack framework using simulations for vision-guided autonomous vehicles and actual tests with a small indoor drone in an office environment. The results show our method's capability to generate the image attack in real-time while monitoring when the attacker is proficient given state estimates.
From out-competing grandmasters in chess to informing high-stakes healthcare decisions, emerging methods from artificial intelligence are increasingly capable of making complex and strategic decisions in diverse, high-dimensional, and uncertain situations. But can these methods help us devise robust strategies for managing environmental systems under great uncertainty? Here we explore how reinforcement learning, a subfield of artificial intelligence, approaches decision problems through a lens similar to adaptive environmental management: learning through experience to gradually improve decisions with updated knowledge. We review where reinforcement learning (RL) holds promise for improving evidence-informed adaptive management decisions even when classical optimization methods are intractable. For example, model-free deep RL might help identify quantitative decision strategies even when models are nonidentifiable. Finally, we discuss technical and social issues that arise when applying reinforcement learning to adaptive management problems in the environmental domain. Our synthesis suggests that environmental management and computer science can learn from one another about the practices, promises, and perils of experience-based decision-making.
The use of machine learning (ML) techniques in the biomedical field has become increasingly important, particularly with the large amounts of data generated by the aftermath of the COVID-19 pandemic. However, due to the complex nature of biomedical datasets and the use of black-box ML models, a lack of trust and adoption by domain experts can arise. In response, interpretable ML (IML) approaches have been developed, but the curse of dimensionality in biomedical datasets can lead to model instability. This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs) and integrating domain knowledge interpretation techniques embedded into the current state-of-the-art IML frameworks. This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models. Specifically, the model outcome, such as aggregated feature weight importance, can be linked to further domain knowledge interpretations using techniques like pathway functional enrichment, drug targeting, and repurposing databases. Additionally, involving end-users and clinicians in focus group discussions before and after the choice of IML framework can help guide testable hypotheses, improve performance metrics, and build trustworthy and usable IML solutions in the biomedical field. Overall, this study highlights the potential of combining advanced computational techniques with domain knowledge interpretation to enhance the effectiveness of IML solutions in the context of complex biomedical datasets.
Programming robot behaviour in a complex world faces challenges on multiple levels, from dextrous low-level skills to high-level planning and reasoning. Recent pre-trained Large Language Models (LLMs) have shown remarkable reasoning ability in zero-shot robotic planning. However, it remains challenging to ground LLMs in multimodal sensory input and continuous action output, while enabling a robot to interact with its environment and acquire novel information as its policies unfold. We develop a robot interaction scenario with a partially observable state, which necessitates a robot to decide on a range of epistemic actions in order to sample sensory information among multiple modalities, before being able to execute the task correctly. An interactive perception framework is therefore proposed with an LLM as its backbone, whose ability is exploited to instruct epistemic actions and to reason over the resulting multimodal sensations (vision, sound, haptics, proprioception), as well as to plan an entire task execution based on the interactively acquired information. Our study demonstrates that LLMs can provide high-level planning and reasoning skills and control interactive robot behaviour in a multimodal environment, while multimodal modules with the context of the environmental state help ground the LLMs and extend their processing ability.
Autonomous racing is a challenging problem, as the vehicle needs to operate at the friction or handling limits in order to achieve minimum lap times. Autonomous race cars require highly accurate perception, state estimation, planning and precise application of controls. What makes it even more challenging is the accurate identification of vehicle model parameters that dictate the effects of the lateral tire slip, which may change over time, for example, due to wear and tear of the tires. Current works either propose model identification offline or need good parameters to start with (within 15-20\% of actual value), which is not enough to account for major changes in tire model that occur during actual races when driving at the control limits. We propose a unified framework which learns the tire model online from the collected data, as well as adjusts the model based on environmental changes even if the model parameters change by a higher margin. We demonstrate our approach in numeric and high-fidelity simulators for a 1:43 scale race car and a full-size car.
For the analysis of a time-to-event endpoint in a single-arm or randomized clinical trial it is generally perceived that interpretation of a given estimate of the survival function, or the comparison between two groups, hinges on some quantification of the amount of follow-up. Typically, a median of some loosely defined quantity is reported. However, whatever median is reported, is typically not answering the question(s) trialists actually have in terms of follow-up quantification. In this paper, inspired by the estimand framework, we formulate a comprehensive list of relevant scientific questions that trialists have when reporting time-to-event data. We illustrate how these questions should be answered, and that reference to an unclearly defined follow-up quantity is not needed at all. In drug development, key decisions are made based on randomized controlled trials, and we therefore also discuss relevant scientific questions not only when looking at a time-to-event endpoint in one group, but also for comparisons. We find that different thinking about some of the relevant scientific questions around follow-up is required depending on whether a proportional hazards assumption can be made or other patterns of survival functions are anticipated, e.g. delayed separation, crossing survival functions, or the potential for cure. We conclude the paper with practical recommendations.
Time-to-event analysis often relies on prior parametric assumptions, or, if a non-parametric approach is chosen, Cox's model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new non-parametric model to directly estimate the relative risk of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of dapagliflozin on the risk of first hospitalization for heart failure.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.