亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatically detecting software failures is an important task and a longstanding challenge. It requires finding failure-inducing test cases whose test input can trigger the software's fault, and constructing an automated oracle to detect the software's incorrect behaviors. Recent advancement of large language models (LLMs) motivates us to study how far this challenge can be addressed by ChatGPT, a state-of-the-art LLM. Unfortunately, our study shows that ChatGPT has a low probability (28.8%) of finding correct failure-inducing test cases for buggy programs. A possible reason is that finding failure-inducing test cases requires analyzing the subtle code differences between a buggy program and its correct version. When these two versions have similar syntax, ChatGPT is weak at recognizing subtle code differences. Our insight is that ChatGPT's performance can be substantially enhanced when ChatGPT is guided to focus on the subtle code difference. We have an interesting observation that ChatGPT is effective in inferring the intended behaviors of a buggy program. The intended behavior can be leveraged to synthesize programs, in order to make the subtle code difference between a buggy program and its correct version (i.e., the synthesized program) explicit. Driven by this observation, we propose a novel approach that synergistically combines ChatGPT and differential testing to find failure-inducing test cases. We evaluate our approach on Quixbugs (a benchmark of buggy programs), and compare it with state-of-the-art baselines, including direct use of ChatGPT and Pynguin. The experimental result shows that our approach has a much higher probability (77.8%) of finding correct failure-inducing test cases, 2.7X as the best baseline.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體(ti)系結構(gou)和綜(zong)合國際(ji)會議。 Publisher:ACM。 SIT:

Label noise is one of the key factors that lead to the poor generalization of deep learning models. Existing label-noise learning methods usually assume that the ground-truth classes of the training data are balanced. However, the real-world data is often imbalanced, leading to the inconsistency between observed and intrinsic class distribution with label noises. In this case, it is hard to distinguish clean samples from noisy samples on the intrinsic tail classes with the unknown intrinsic class distribution. In this paper, we propose a learning framework for label-noise learning with intrinsically long-tailed data. Specifically, we propose two-stage bi-dimensional sample selection (TABASCO) to better separate clean samples from noisy samples, especially for the tail classes. TABASCO consists of two new separation metrics that complement each other to compensate for the limitation of using a single metric in sample separation. Extensive experiments on benchmarks demonstrate the effectiveness of our method. Our code is available at //github.com/Wakings/TABASCO.

While software engineers are optimistically adopting crypto-API misuse detectors (or crypto-detectors) in their software development cycles, this momentum must be accompanied by a rigorous understanding of crypto-detectors' effectiveness at finding crypto-API misuses in practice. This demo paper presents the technical details and usage scenarios of our tool, namely Mutation Analysis for evaluating Static Crypto-API misuse detectors (MASC). We developed $12$ generalizable, usage based mutation operators and three mutation scopes, namely Main Scope, Similarity Scope, and Exhaustive Scope, which can be used to expressively instantiate compilable variants of the crypto-API misuse cases. Using MASC, we evaluated nine major crypto-detectors, and discovered $19$ unique, undocumented flaws. We designed MASC to be configurable and user-friendly; a user can configure the parameters to change the nature of generated mutations. Furthermore, MASC comes with both Command Line Interface and Web-based front-end, making it practical for users of different levels of expertise.

Fully homomorphic encryption (FHE) is in the spotlight as a definitive solution for privacy, but the high computational overhead of FHE poses a challenge to its practical adoption. Although prior studies have attempted to design ASIC accelerators to mitigate the overhead, their designs require excessive amounts of chip resources (e.g., areas) to contain and process massive data for FHE operations. We propose CiFHER, a chiplet-based FHE accelerator with a resizable structure, to tackle the challenge with a cost-effective multi-chip module (MCM) design. First, we devise a flexible architecture of a chiplet core whose configuration can be adjusted to conform to the global organization of chiplets and design constraints. The distinctive feature of our core is a recomposable functional unit providing varying computational throughput for number-theoretic transform (NTT), the most dominant function in FHE. Then, we establish generalized data mapping methodologies to minimize the network overhead when organizing the chips into the MCM package in a tiled manner, which becomes a significant bottleneck due to the technology constraints of MCMs. Also, we analyze the effectiveness of various algorithms, including a novel limb duplication algorithm, on the MCM architecture. A detailed evaluation shows that a CiFHER package composed of 4 to 64 compact chiplets provides performance comparable to state-of-the-art monolithic ASIC FHE accelerators with significantly lower package-wide power consumption while reducing the area of a single core to as small as 4.28mm$^2$.

Optical metasurfaces composed of precisely engineered nanostructures have gained significant attention for their ability to manipulate light and implement distinct functionalities based on the properties of the incident field. Computational imaging systems have started harnessing this capability to produce sets of coded measurements that benefit certain tasks when paired with digital post-processing. Inspired by these works, we introduce a new system that uses a birefringent metasurface with a polarizer-mosaicked photosensor to capture four optically-coded measurements in a single exposure. We apply this system to the task of incoherent opto-electronic filtering, where digital spatial-filtering operations are replaced by simpler, per-pixel sums across the four polarization channels, independent of the spatial filter size. In contrast to previous work on incoherent opto-electronic filtering that can realize only one spatial filter, our approach can realize a continuous family of filters from a single capture, with filters being selected from the family by adjusting the post-capture digital summation weights. To find a metasurface that can realize a set of user-specified spatial filters, we introduce a form of gradient descent with a novel regularizer that encourages light efficiency and a high signal-to-noise ratio. We demonstrate several examples in simulation and with fabricated prototypes, including some with spatial filters that have prescribed variations with respect to depth and wavelength. Visit the Project Page at //deanhazineh.github.io/publications/Multi_Image_Synthesis/MIS_Home.html

Multi-object tracking (MOT) at low frame rates can reduce computational, storage and power overhead to better meet the constraints of edge devices. Many existing MOT methods suffer from significant performance degradation in low-frame-rate videos due to significant location and appearance changes between adjacent frames. To this end, we propose to explore collaborative tracking learning (ColTrack) for frame-rate-insensitive MOT in a query-based end-to-end manner. Multiple historical queries of the same target jointly track it with richer temporal descriptions. Meanwhile, we insert an information refinement module between every two temporal blocking decoders to better fuse temporal clues and refine features. Moreover, a tracking object consistency loss is proposed to guide the interaction between historical queries. Extensive experimental results demonstrate that in high-frame-rate videos, ColTrack obtains higher performance than state-of-the-art methods on large-scale datasets Dancetrack and BDD100K, and outperforms the existing end-to-end methods on MOT17. More importantly, ColTrack has a significant advantage over state-of-the-art methods in low-frame-rate videos, which allows it to obtain faster processing speeds by reducing frame-rate requirements while maintaining higher performance. Code will be released at //github.com/yolomax/ColTrack

Machine learning (ML) components are being added to more and more critical and impactful software systems, but the software development process of real-world production systems from prototyped ML models remains challenging with additional complexity and interdisciplinary collaboration challenges. This poses difficulties in using traditional software lifecycle models such as waterfall, spiral or agile model when building ML-enabled systems. By interviewing with practitioners from multiple companies, we investigated the application of using systems engineering process in ML-enabled systems. We developed a set of propositions and proposed V4ML process model for building products with ML components. We found that V4ML process model requires more efforts on documentation, system decomposition and V&V, but it addressed the interdisciplinary collaboration challenges and additional complexity introduced by ML components.

Although App updates are frequent and software engineers would like to verify updated features only, automated testing techniques verify entire Apps and are thus wasting resources. We present Continuous Adaptation of Learned Models (CALM), an automated App testing approach that efficiently tests App updates by adapting App models learned when automatically testing previous App versions. CALM focuses on functional testing. Since functional correctness can be mainly verified through the visual inspection of App screens, CALM minimizes the number of App screens to be visualized by software testers while maximizing the percentage of updated methods and instructions exercised. Our empirical evaluation shows that CALM exercises a significantly higher proportion of updated methods and instructions than six state-of-the-art approaches, for the same maximum number of App screens to be visually inspected. Further, in common update scenarios, where only a small fraction of methods are updated, CALM is even quicker to outperform all competing approaches in a more significant way.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司