亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in deep learning, such as powerful generative models and joint text-image embeddings, have provided the computational creativity community with new tools, opening new perspectives for artistic pursuits. Text-to-image synthesis approaches that operate by generating images from text cues provide a case in point. These images are generated with a latent vector that is progressively refined to agree with text cues. To do so, patches are sampled within the generated image, and compared with the text prompts in the common text-image embedding space; The latent vector is then updated, using gradient descent, to reduce the mean (average) distance between these patches and text cues. While this approach provides artists with ample freedom to customize the overall appearance of images, through their choice in generative models, the reliance on a simple criterion (mean of distances) often causes mode collapse: The entire image is drawn to the average of all text cues, thereby losing their diversity. To address this issue, we propose using matching techniques found in the optimal transport (OT) literature, resulting in images that are able to reflect faithfully a wide diversity of prompts. We provide numerous illustrations showing that OT avoids some of the pitfalls arising from estimating vectors with mean distances, and demonstrate the capacity of our proposed method to perform better in experiments, qualitatively and quantitatively.

相關內容

Interpolating between measures supported by polygonal or polyhedral domains is a problem that has been recently addressed by the semi-discrete optimal transport framework. Within this framework, one of the domains is discretized with a set of samples, while the other one remains continuous. In this paper we present a method to introduce some symmetry into the solution using coupled power diagrams. This symmetry is key to capturing the discontinuities of the transport map reflected in the geometry of the power cells. We design our method as a fixed-point algorithm alternating between computations of semi-discrete transport maps and recentering of the sites. The resulting objects are coupled power diagrams with identical geometry, allowing us to approximate displacement interpolation through linear interpolation of the meshes vertices. Through these coupled power diagrams, we have a natural way of jointly sampling measures.

Digital whole slides images contain an enormous amount of information providing a strong motivation for the development of automated image analysis tools. Particularly deep neural networks show high potential with respect to various tasks in the field of digital pathology. However, a limitation is given by the fact that typical deep learning algorithms require (manual) annotations in addition to the large amounts of image data, to enable effective training. Multiple instance learning exhibits a powerful tool for learning deep neural networks in a scenario without fully annotated data. These methods are particularly effective in this domain, due to the fact that labels for a complete whole slide image are often captured routinely, whereas labels for patches, regions or pixels are not. This potential already resulted in a considerable number of publications, with the majority published in the last three years. Besides the availability of data and a high motivation from the medical perspective, the availability of powerful graphics processing units exhibits an accelerator in this field. In this paper, we provide an overview of widely and effectively used concepts of used deep multiple instance learning approaches, recent advances and also critically discuss remaining challenges and future potential.

We study the problem of estimating the left and right singular subspaces for a collection of heterogeneous random graphs with a shared common structure. We analyze an algorithm that first estimates the orthogonal projection matrices corresponding to these subspaces for each individual graph, then computes the average of the projection matrices, and finally finds the matrices whose columns are the eigenvectors corresponding to the $d$ largest eigenvalues of the sample averages. We show that the algorithm yields an estimate of the left and right singular vectors whose row-wise fluctuations are normally distributed around the rows of the true singular vectors. We then consider a two-sample hypothesis test for the null hypothesis that two graphs have the same edge probabilities matrices against the alternative hypothesis that their edge probabilities matrices are different. Using the limiting distributions for the singular subspaces, we present a test statistic whose limiting distribution converges to a central $\chi^2$ (resp. non-central $\chi^2$) under the null (resp. alternative) hypothesis. Finally, we adapt the theoretical analysis for multiple networks to the setting of distributed PCA; in particular, we derive normal approximations for the rows of the estimated eigenvectors using distributed PCA when the data exhibit a spiked covariance matrix structure.

In precision medicine, identifying optimal sequences of decision rules, termed dynamic treatment regimes (DTRs), is an important undertaking. One approach investigators may take to infer about optimal DTRs is via Bayesian dynamic Marginal Structural Models (MSMs). These models represent the expected outcome under adherence to a DTR for DTRs in a family indexed by a parameter $ \psi $; the function mapping regimes in the family to the expected outcome under adherence to a DTR is known as the value function. Models that allow for the straightforward identification of an optimal DTR may lead to biased estimates. If such a model is computationally tractable, common wisdom says that a grid-search for the optimal DTR may obviate this difficulty. In a Bayesian context, computational difficulties may be compounded if a posterior mean must be calculated at each grid point. We seek to alleviate these inferential challenges by implementing Gaussian Process ($ \mathcal{GP} $) optimization methods for estimators for the causal effect of adherence to a specified DTR. We examine how to identify optimal DTRs in settings where the value function is multi-modal, which are often not addressed in the DTR literature. We conclude that a $ \mathcal{GP} $ modeling approach that acknowledges noise in the estimated response surface leads to improved results. Additionally, we find that a grid-search may not always yield a robust solution and that it is often less efficient than a $ \mathcal{GP} $ approach. We illustrate the use of the proposed methods by analyzing a clinical dataset with the aim of quantifying the effect of different patterns of HIV therapy.

We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.

Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.

Multiple Instance Learning (MIL) methods have become increasingly popular for classifying giga-pixel sized Whole-Slide Images (WSIs) in digital pathology. Most MIL methods operate at a single WSI magnification, by processing all the tissue patches. Such a formulation induces high computational requirements, and constrains the contextualization of the WSI-level representation to a single scale. A few MIL methods extend to multiple scales, but are computationally more demanding. In this paper, inspired by the pathological diagnostic process, we propose ZoomMIL, a method that learns to perform multi-level zooming in an end-to-end manner. ZoomMIL builds WSI representations by aggregating tissue-context information from multiple magnifications. The proposed method outperforms the state-of-the-art MIL methods in WSI classification on two large datasets, while significantly reducing the computational demands with regard to Floating-Point Operations (FLOPs) and processing time by up to 40x.

Modern image generative models show remarkable sample quality when trained on a single domain or class of objects. In this work, we introduce a generative adversarial network that can simultaneously generate aligned image samples from multiple related domains. We leverage the fact that a variety of object classes share common attributes, with certain geometric differences. We propose Polymorphic-GAN which learns shared features across all domains and a per-domain morph layer to morph shared features according to each domain. In contrast to previous works, our framework allows simultaneous modelling of images with highly varying geometries, such as images of human faces, painted and artistic faces, as well as multiple different animal faces. We demonstrate that our model produces aligned samples for all domains and show how it can be used for applications such as segmentation transfer and cross-domain image editing, as well as training in low-data regimes. Additionally, we apply our Polymorphic-GAN on image-to-image translation tasks and show that we can greatly surpass previous approaches in cases where the geometric differences between domains are large.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司