亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for power-constrained Internet-of-Things (IoT) smart devices, where IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmit energy minimization problem by jointly optimizing time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. On account of the high coupling of optimization variables, the formulated problem is a non-convex optimization problem that is difficult to solve directly. To address the above-mentioned challenging problem, alternating optimization (AO) technique is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is used to solve the non-convex rank-one constraint in solving IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the superiority of the proposed optimization algorithm in decreasing HAP transmit energy compared with other benchmark schemes.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · MoDELS · Networks · AIM ·
2022 年 2 月 11 日

Fog-assisted 5G Networks allow the users within the networks to execute their tasks and processes through fog nodes and cooperation among the fog nodes. As a result, the delay in task execution reduces as compared to that in case of independent task execution, where the Base Station (BS) or server is directly involved. In the practical scenario, the ability to cooperate clearly depends on the willingness of fog nodes to cooperate. Hence, in this paper, we propose an incentive-based bargaining approach which encourages the fog nodes to cooperate among themselves by receiving incentives from the end users benefitting from the cooperation. Considering the heterogenous nature of users and fog nodes based on their storage capacity, energy efficiency etc., we aim to emphasise a fair incentive mechanism which fairly and uniformly distributes the incentives from user to the participating fog nodes. The proposed incentive-based cooperative approach reduces the cost of end users as well as balances the energy consumption of fog nodes. The proposed system model addresses and models the above approaches and mathematically formulate cost models for both fog nodes and the end users in a fog-assisted 5G network.

In today's digital world, interaction with online platforms is ubiquitous, and thus content moderation is important for protecting users from content that do not comply with pre-established community guidelines. Having a robust content moderation system throughout every stage of planning is particularly important. We study the short-term planning problem of allocating human content reviewers to different harmful content categories. We use tools from fair division and study the application of competitive equilibrium and leximin allocation rules. Furthermore, we incorporate, to the traditional Fisher market setup, novel aspects that are of practical importance. The first aspect is the forecasted workload of different content categories. We show how a formulation that is inspired by the celebrated Eisenberg-Gale program allows us to find an allocation that not only satisfies the forecasted workload, but also fairly allocates the remaining reviewing hours among all content categories. The resulting allocation is also robust as the additional allocation provides a guardrail in cases where the actual workload deviates from the predicted workload. The second practical consideration is time dependent allocation that is motivated by the fact that partners need scheduling guidance for the reviewers across days to achieve efficiency. To address the time component, we introduce new extensions of the various fair allocation approaches for the single-time period setting, and we show that many properties extend in essence, albeit with some modifications. Related to the time component, we additionally investigate how to satisfy markets' desire for smooth allocation (e.g., partners for content reviewers prefer an allocation that does not vary much from time to time, to minimize staffing switch). We demonstrate the performance of our proposed approaches through real-world data obtained from Meta.

In this paper, we study the resource allocation problem for an intelligent reflecting surface (IRS)-assisted OFDM system. The system sum rate maximization framework is formulated by jointly optimizing subcarrier allocation, base station transmit beamforming and IRS phase shift. Considering the continuous and discrete hybrid action space characteristics of the optimization variables, we propose an efficient resource allocation algorithm combining multiple deep Q networks (MDQN) and deep deterministic policy-gradient (DDPG) to deal with this issue. In our algorithm, MDQN are employed to solve the problem of large discrete action space, while DDPG is introduced to tackle the continuous action allocation. Compared with the traditional approaches, our proposed MDQN-DDPG based algorithm has the advantage of continuous behavior improvement through learning from the environment. Simulation results demonstrate superior performance of our design in terms of system sum rate compared with the benchmark schemes.

Federated learning (FL) is capable of performing large distributed machine learning tasks across multiple edge users by periodically aggregating trained local parameters. To address key challenges of enabling FL over a wireless fog-cloud system (e.g., non-i.i.d. data, users' heterogeneity), we first propose an efficient FL algorithm based on Federated Averaging (called FedFog) to perform the local aggregation of gradient parameters at fog servers and global training update at the cloud. Next, we employ FedFog in wireless fog-cloud systems by investigating a novel network-aware FL optimization problem that strikes the balance between the global loss and completion time. An iterative algorithm is then developed to obtain a precise measurement of the system performance, which helps design an efficient stopping criteria to output an appropriate number of global rounds. To mitigate the straggler effect, we propose a flexible user aggregation strategy that trains fast users first to obtain a certain level of accuracy before allowing slow users to join the global training updates. Extensive numerical results using several real-world FL tasks are provided to verify the theoretical convergence of FedFog. We also show that the proposed co-design of FL and communication is essential to substantially improve resource utilization while achieving comparable accuracy of the learning model.

Intelligent reflecting surface (IRS) has emerged as a cost-effective solution to enhance wireless communication performance via passive signal reflection. Existing works on IRS have mainly focused on investigating IRS's passive beamforming/reflection design to boost the communication rate for users assuming that their channel state information (CSI) is fully or partially known. However, how to exploit IRS to improve the wireless transmission reliability without any CSI, which is typical in high-mobility/delay-sensitive communication scenarios, remains largely open. In this paper, we study a new IRS-aided communication system with the IRS integrated to its aided access point (AP) to achieve both functions of transmit diversity and passive beamforming simultaneously. Specifically, we first show an interesting result that the IRS's passive beamforming gain in any direction is invariant to the common phase-shift applied to all of its reflecting elements. Accordingly, we design the common phase-shift of IRS elements to achieve transmit diversity at the AP side without the need of any CSI of the users. In addition, we propose a practical method for the users to estimate the CSI at the receiver side for information decoding. Meanwhile, we show that the conventional passive beamforming gain of IRS can be retained for the other users with their CSI known at the AP. Furthermore, we derive the asymptotic performance of both IRS-aided transmit diversity and passive beamforming in closed-form, by considering the large-scale IRS with an infinite number of elements. Numerical results validate our analysis and show the performance gains of the proposed IRS-aided simultaneous transmit diversity and passive beamforming scheme over other benchmark schemes.

This paper proposes a deep learning approach to a class of active sensing problems in wireless communications in which an agent sequentially interacts with an environment over a predetermined number of time frames to gather information in order to perform a sensing or actuation task for maximizing some utility function. In such an active learning setting, the agent needs to design an adaptive sensing strategy sequentially based on the observations made so far. To tackle such a challenging problem in which the dimension of historical observations increases over time, we propose to use a long short-term memory (LSTM) network to exploit the temporal correlations in the sequence of observations and to map each observation to a fixed-size state information vector. We then use a deep neural network (DNN) to map the LSTM state at each time frame to the design of the next measurement step. Finally, we employ another DNN to map the final LSTM state to the desired solution. We investigate the performance of the proposed framework for adaptive channel sensing problems in wireless communications. In particular, we consider the adaptive beamforming problem for mmWave beam alignment and the adaptive reconfigurable intelligent surface sensing problem for reflection alignment. Numerical results demonstrate that the proposed deep active sensing strategy outperforms the existing adaptive or nonadaptive sensing schemes.

The implementation of integrated sensing and communication (ISAC) highly depends on the effective beamforming design exploiting accurate instantaneous channel state information (ICSI). However, channel tracking in ISAC requires large amount of training overhead and prohibitively large computational complexity. To address this problem, in this paper, we focus on ISAC-assisted vehicular networks and exploit a deep learning approach to implicitly learn the features of historical channels and directly predict the beamforming matrix for the next time slot to maximize the average achievable sum-rate of system, thus bypassing the need of explicit channel tracking for reducing the system signaling overhead. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system. Then, a historical channels-based convolutional long short-term memory network is designed for predictive beamforming that can exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed method can satisfy the requirement of sensing performance, while its achievable sum-rate can approach the upper bound obtained by a genie-aided scheme with perfect ICSI available.

With deployment of 6G technology, it is envisioned that competitive edge of wireless networks will be sustained and next decade's communication requirements will be stratified. Also 6G will aim to aid development of a human society which is ubiquitous and mobile, simultaneously providing solutions to key challenges such as, coverage, capacity, etc. In addition, 6G will focus on providing intelligent use-cases and applications using higher data-rates over mill-meter waves and Tera-Hertz frequency. However, at higher frequencies multiple non-desired phenomena such as atmospheric absorption, blocking, etc., occur which create a bottleneck owing to resource (spectrum and energy) scarcity. Hence, following same trend of making efforts towards reproducing at receiver, exact information which was sent by transmitter, will result in a never ending need for higher bandwidth. A possible solution to such a challenge lies in semantic communications which focuses on meaning (context) of received data as opposed to only reproducing correct transmitted data. This in turn will require less bandwidth, and will reduce bottleneck due to various undesired phenomenon. In this respect, current article presents a detailed survey on recent technological trends in regard to semantic communications for intelligent wireless networks. We focus on semantic communications architecture including model, and source and channel coding. Next, we detail cross-layer interaction, and various goal-oriented communication applications. We also present overall semantic communications trends in detail, and identify challenges which need timely solutions before practical implementation of semantic communications within 6G wireless technology. Our survey article is an attempt to significantly contribute towards initiating future research directions in area of semantic communications for intelligent 6G wireless networks.

In ultra-dense millimeter wave (mmWave) networks, mmWave signals suffer from severe path losses and are easily blocked by obstacles. Meanwhile, ultra-dense deployment causes excessive handovers, which reduces the data link reliability. To alleviate the above issues, the novel technology, known as multi-connectivity enabled user association (MCUA) is incorporated in this letter. We aim to jointly optimize MCUAs and downlink (DL) power allocations (PAs) to maximize the DL rate of each user simultaneously, rather than total. This is a non-convex nonlinear 0-1 mixed integer multi-objective optimization problem and quite complicated. To solve it, we first use the weighted sum method to scalarize it as a single-objective optimization problem (SOOP), and then relax the binary association variables to real ones. Considering that the relaxed SOOP is still non-convex, we perform a series of transformations upon it and make it a differential of convex programming. Finally, we develop an iterative algorithm based on the convex-concave procedure to solve the SOOP. Numerical results are presented to demonstrate the effectiveness of the proposed algorithms.

This paper considers the integrated problem of quay crane assignment, quay crane scheduling, yard location assignment, and vehicle dispatching operations at a container terminal. The main objective is to minimize vessel turnover times and maximize the terminal throughput, which are key economic drivers in terminal operations. Due to their computational complexities, these problems are not optimized jointly in existing work. This paper revisits this limitation and proposes Mixed Integer Programming (MIP) and Constraint Programming (CP) models for the integrated problem, under some realistic assumptions. Experimental results show that the MIP formulation can only solve small instances, while the CP model finds optimal solutions in reasonable times for realistic instances derived from actual container terminal operations.

北京阿比特科技有限公司