亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive large-sample and other limiting distributions of the ``frequency of frequencies'' vector, ${\bf M_n}$, together with the number of species, $K_n$, in a Poisson-Dirichlet or generalised Poisson-Dirichlet gene or species sampling model. Models analysed include those constructed from gamma and $\alpha$-stable subordinators by Kingman, the two-parameter extension by Pitman and Yor, and another two-parameter version constructed by omitting large jumps from an $\alpha$-stable subordinator. In the Poisson-Dirichlet case ${\bf M_n}$ and $K_n$ turn out to be asymptotically independent, and notable, especially for statistical applications, is that in other cases the conditional limiting distribution of ${\bf M_n}$, given $K_n$, is normal, after certain centering and norming.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

A new approach to analyzing intrinsic properties of the Josephus function, $J_{_k}$, is presented in this paper. The linear structure between extreme points of $J_{_k}$ is fully revealed, leading to the design of an efficient algorithm for evaluating $J_{_k}(n)$. Algebraic expressions that describe how recursively compute extreme points, including fixed points, are derived. The existence of consecutive extreme and also fixed points for all $k\geq 2$ is proven as a consequence, which generalizes Knuth result for $k=2$. Moreover, an extensive comparative numerical experiment is conducted to illustrate the performance of the proposed algorithm for evaluating the Josephus function compared to established algorithms. The results show that the proposed scheme is highly effective in computing $J_{_k}(n)$ for large inputs.

We study the minority-opinion dynamics over a fully-connected network of $n$ nodes with binary opinions. Upon activation, a node receives a sample of opinions from a limited number of neighbors chosen uniformly at random. Each activated node then adopts the opinion that is least common within the received sample. Unlike all other known consensus dynamics, we prove that this elementary protocol behaves in dramatically different ways, depending on whether activations occur sequentially or in parallel. Specifically, we show that its expected consensus time is exponential in $n$ under asynchronous models, such as asynchronous GOSSIP. On the other hand, despite its chaotic nature, we show that it converges within $O(\log^2 n)$ rounds with high probability under synchronous models, such as synchronous GOSSIP. Finally, our results shed light on the bit-dissemination problem, that was previously introduced to model the spread of information in biological scenarios. Specifically, our analysis implies that the minority-opinion dynamics is the first stateless solution to this problem, in the parallel passive-communication setting, achieving convergence within a polylogarithmic number of rounds. This, together with a known lower bound for sequential stateless dynamics, implies a parallel-vs-sequential gap for this problem that is nearly quadratic in the number $n$ of nodes. This is in contrast to all known results for problems in this area, which exhibit a linear gap between the parallel and the sequential setting.

Pomset logic and BV are both logics that extend multiplicative linear logic (with Mix) with a third connective that is self-dual and non-commutative. Whereas pomset logic originates from the study of coherence spaces and proof nets, BV originates from the study of series-parallel orders, cographs, and proof systems. Both logics enjoy a cut-admissibility result, but for neither logic can this be done in the sequent calculus. Provability in pomset logic can be checked via a proof net correctness criterion and in BV via a deep inference proof system. It has long been conjectured that these two logics are the same. In this paper we show that this conjecture is false. We also investigate the complexity of the two logics, exhibiting a huge gap between the two. Whereas provability in BV is NP-complete, provability in pomset logic is $\Sigma_2^p$-complete. We also make some observations with respect to possible sequent systems for the two logics.

A universal partial cycle (or upcycle) for $\mathcal{A}^n$ is a cyclic sequence that covers each word of length $n$ over the alphabet $\mathcal{A}$ exactly once -- like a De Bruijn cycle, except that we also allow a wildcard symbol $\mathord{\diamond}$ that can represent any letter of $\mathcal{A}$. Chen et al. in 2017 and Goeckner et al. in 2018 showed that the existence and structure of upcycles are highly constrained, unlike those of De Bruijn cycles, which exist for any alphabet size and word length. Moreover, it was not known whether any upcycles existed for $n \ge 5$. We present several examples of upcycles over both binary and non-binary alphabets for $n = 8$. We generalize two graph-theoretic representations of De Bruijn cycles to upcycles. We then introduce novel approaches to constructing new upcycles from old ones. Notably, given any upcycle for an alphabet of size $a$, we show how to construct an upcycle for an alphabet of size $ak$ for any $k \in \mathbb{N}$, so each example generates an infinite family of upcycles. We also define folds and lifts of upcycles, which relate upcycles with differing densities of $\mathord{\diamond}$ characters. In particular, we show that every upcycle lifts to a De Bruijn cycle. Our constructions rely on a different generalization of De Bruijn cycles known as perfect necklaces, and we introduce several new examples of perfect necklaces. We extend the definitions of certain pseudorandomness properties to partial words and determine which are satisfied by all upcycles, then draw a conclusion about linear feedback shift registers. Finally, we prove new nonexistence results based on the word length $n$, alphabet size, and $\mathord{\diamond}$ density.

In this article, we study systems of $n \geq 1$, not necessarily linear, discrete differential equations (DDEs) of order $k \geq 1$ with one catalytic variable. We provide a constructive and elementary proof of algebraicity of the solutions of such equations. This part of the present article can be seen as a generalization of the pioneering work by Bousquet-M\'elou and Jehanne~(2006) who settled down the case $n=1$. Moreover, we obtain effective bounds for the algebraicity degrees of the solutions and provide an algorithm for computing annihilating polynomials of the algebraic series. Finally, we carry out a first analysis in the direction of effectivity for solving systems of DDEs in view of practical applications.

Classes of target functions containing a large number of approximately orthogonal elements are known to be hard to learn by the Statistical Query algorithms. Recently this classical fact re-emerged in a theory of gradient-based optimization of neural networks. In the novel framework, the hardness of a class is usually quantified by the variance of the gradient with respect to a random choice of a target function. A set of functions of the form $x\to ax \bmod p$, where $a$ is taken from ${\mathbb Z}_p$, has attracted some attention from deep learning theorists and cryptographers recently. This class can be understood as a subset of $p$-periodic functions on ${\mathbb Z}$ and is tightly connected with a class of high-frequency periodic functions on the real line. We present a mathematical analysis of limitations and challenges associated with using gradient-based learning techniques to train a high-frequency periodic function or modular multiplication from examples. We highlight that the variance of the gradient is negligibly small in both cases when either a frequency or the prime base $p$ is large. This in turn prevents such a learning algorithm from being successful.

Covariate shift occurs prevalently in practice, where the input distributions of the source and target data are substantially different. Despite its practical importance in various learning problems, most of the existing methods only focus on some specific learning tasks and are not well validated theoretically and numerically. To tackle this problem, we propose a unified analysis of general nonparametric methods in a reproducing kernel Hilbert space (RKHS) under covariate shift. Our theoretical results are established for a general loss belonging to a rich loss function family, which includes many commonly used methods as special cases, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification. Two types of covariate shift problems are the focus of this paper and the sharp convergence rates are established for a general loss function to provide a unified theoretical analysis, which concurs with the optimal results in literature where the squared loss is used. Extensive numerical studies on synthetic and real examples confirm our theoretical findings and further illustrate the effectiveness of our proposed method.

We propose tests of fit for classes of distributions that include the Weibull, the Pareto and the Fr\'echet, distributions. The new tests employ the novel tool of the min--characteristic function and are based on an L2--type weighted distance between this function and its empirical counterpart applied on suitably standardized data. If data--standardization is performed using the MLE of the distributional parameters then the method reduces to testing for the standard member of the family, with parameter values known and set equal to one. We investigate asymptotic properties of the tests, while a Monte Carlo study is presented that includes the new procedure as well as competitors for the purpose of specification testing with three extreme value distributions. The new tests are also applied on a few real--data sets.

It is proven that a conjecture of Tao (2010) holds true for log-concave random variables on the integers: For every $n \geq 1$, if $X_1,\ldots,X_n$ are i.i.d. integer-valued, log-concave random variables, then $$ H(X_1+\cdots+X_{n+1}) \geq H(X_1+\cdots+X_{n}) + \frac{1}{2}\log{\Bigl(\frac{n+1}{n}\Bigr)} - o(1) $$ as $H(X_1) \to \infty$, where $H$ denotes the (discrete) Shannon entropy. The problem is reduced to the continuous setting by showing that if $U_1,\ldots,U_n$ are independent continuous uniforms on $(0,1)$, then $$ h(X_1+\cdots+X_n + U_1+\cdots+U_n) = H(X_1+\cdots+X_n) + o(1) $$ as $H(X_1) \to \infty$, where $h$ stands for the differential entropy. Explicit bounds for the $o(1)$-terms are provided.

We generalized a modified exponentialized estimator by pushing the robust-optimal (RO) index $\lambda$ to $-\infty$ for achieving robustness to outliers by optimizing a quasi-Minimin function. The robustness is realized and controlled adaptively by the RO index without any predefined threshold. Optimality is guaranteed by expansion of the convexity region in the Hessian matrix to largely avoid local optima. Detailed quantitative analysis on both robustness and optimality are provided. The results of proposed experiments on fitting tasks for three noisy non-convex functions and the digits recognition task on the MNIST dataset consolidate the conclusions.

北京阿比特科技有限公司