Linear complementary dual (LCD) codes are linear codes which intersect their dual codes trivially, which have been of interest and extensively studied due to its wide applications. In this paper, we give some methods for constructing LCD codes over small fields by modifying some known methods. We show that all odd-like binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes can be constructed by the modified methods. Using these methods, we construct a lot of optimal binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes, which improve the known lower bounds on the largest minimum weights. Furthermore, we give two counterexamples to show that the conjecture proposed by Bouyuklieva (Des. Codes Cryptogr. 89(11): 2445-2461, 2021) is invalid.
This paper proves that robustness implies generalization via data-dependent generalization bounds. As a result, robustness and generalization are shown to be connected closely in a data-dependent manner. Our bounds improve previous bounds in two directions, to solve an open problem that has seen little development since 2010. The first is to reduce the dependence on the covering number. The second is to remove the dependence on the hypothesis space. We present several examples, including ones for lasso and deep learning, in which our bounds are provably preferable. The experiments on real-world data and theoretical models demonstrate near-exponential improvements in various situations. To achieve these improvements, we do not require additional assumptions on the unknown distribution; instead, we only incorporate an observable and computable property of the training samples. A key technical innovation is an improved concentration bound for multinomial random variables that is of independent interest beyond robustness and generalization.
The monotone minimal perfect hash function (MMPHF) problem is the following indexing problem. Given a set $S= \{s_1,\ldots,s_n\}$ of $n$ distinct keys from a universe $U$ of size $u$, create a data structure $DS$ that answers the following query: \[ RankOp(q) = \text{rank of } q \text{ in } S \text{ for all } q\in S ~\text{ and arbitrary answer otherwise.} \] Solutions to the MMPHF problem are in widespread use in both theory and practice. The best upper bound known for the problem encodes $DS$ in $O(n\log\log\log u)$ bits and performs queries in $O(\log u)$ time. It has been an open problem to either improve the space upper bound or to show that this somewhat odd looking bound is tight. In this paper, we show the latter: specifically that any data structure (deterministic or randomized) for monotone minimal perfect hashing of any collection of $n$ elements from a universe of size $u$ requires $\Omega(n \cdot \log\log\log{u})$ expected bits to answer every query correctly. We achieve our lower bound by defining a graph $\mathbf{G}$ where the nodes are the possible ${u \choose n}$ inputs and where two nodes are adjacent if they cannot share the same $DS$. The size of $DS$ is then lower bounded by the log of the chromatic number of $\mathbf{G}$. Finally, we show that the fractional chromatic number (and hence the chromatic number) of $\mathbf{G}$ is lower bounded by $2^{\Omega(n \log\log\log u)}$.
Let $\Phi$ be a random $k$-CNF formula on $n$ variables and $m$ clauses, where each clause is a disjunction of $k$ literals chosen independently and uniformly. Our goal is, for most $\Phi$, to (approximately) uniformly sample from its solution space. Let $\alpha=m/n$ be the density. The previous best algorithm runs in time $n^{\mathsf{poly}(k,\alpha)}$ for any $\alpha\lesssim2^{k/300}$ [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. In contrast, our algorithm runs in near-linear time for any $\alpha\lesssim2^{k/3}$.
We consider the problem of estimating a dose-response curve, both globally and locally at a point. Continuous treatments arise often in practice, e.g. in the form of time spent on an operation, distance traveled to a location or dosage of a drug. Letting A denote a continuous treatment variable, the target of inference is the expected outcome if everyone in the population takes treatment level A=a. Under standard assumptions, the dose-response function takes the form of a partial mean. Building upon the recent literature on nonparametric regression with estimated outcomes, we study three different estimators. As a global method, we construct an empirical-risk-minimization-based estimator with an explicit characterization of second-order remainder terms. As a local method, we develop a two-stage, doubly-robust (DR) learner. Finally, we construct a mth-order estimator based on the theory of higher-order influence functions. Under certain conditions, this higher order estimator achieves the fastest rate of convergence that we are aware of for this problem. However, the other two approaches are easier to implement using off-the-shelf software, since they are formulated as two-stage regression tasks. For each estimator, we provide an upper bound on the mean-square error and investigate its finite-sample performance in a simulation. Finally, we describe a flexible, nonparametric method to perform sensitivity analysis to the no-unmeasured-confounding assumption when the treatment is continuous.
We study \textit{rescaled gradient dynamical systems} in a Hilbert space $\mathcal{H}$, where implicit discretization in a finite-dimensional Euclidean space leads to high-order methods for solving monotone equations (MEs). Our framework can be interpreted as a natural generalization of celebrated dual extrapolation method~\citep{Nesterov-2007-Dual} from first order to high order via appeal to the regularization toolbox of optimization theory~\citep{Nesterov-2021-Implementable, Nesterov-2021-Inexact}. More specifically, we establish the existence and uniqueness of a global solution and analyze the convergence properties of solution trajectories. We also present discrete-time counterparts of our high-order continuous-time methods, and we show that the $p^{th}$-order method achieves an ergodic rate of $O(k^{-(p+1)/2})$ in terms of a restricted merit function and a pointwise rate of $O(k^{-p/2})$ in terms of a residue function. Under regularity conditions, the restarted version of $p^{th}$-order methods achieves local convergence with the order $p \geq 2$. Notably, our methods are \textit{optimal} since they have matched the lower bound established for solving the monotone equation problems under a standard linear span assumption~\citep{Lin-2022-Perseus}.
This paper settles an open and challenging question pertaining to the design of simple high-order regularization methods for solving smooth and monotone variational inequalities (VIs). A VI involves finding $x^\star \in \mathcal{X}$ such that $\langle F(x), x - x^\star\rangle \geq 0$ for all $x \in \mathcal{X}$ and we consider the setting where $F: \mathbb{R}^d \mapsto \mathbb{R}^d$ is smooth with up to $(p-1)^{th}$-order derivatives. For $p = 2$,~\citet{Nesterov-2006-Constrained} extended the cubic regularized Newton's method to VIs with a global rate of $O(\epsilon^{-1})$.~\citet{Monteiro-2012-Iteration} proposed another second-order method which achieved an improved rate of $O(\epsilon^{-2/3}\log(1/\epsilon))$, but this method required a nontrivial binary search procedure as an inner loop. High-order methods based on similar binary search procedures have been further developed and shown to achieve a rate of $O(\epsilon^{-2/(p+1)}\log(1/\epsilon))$. However, such search procedure can be computationally prohibitive in practice and the problem of finding a simple high-order regularization methods remains as an open and challenging question in optimization theory. We propose a $p^{th}$-order method that does \textit{not} require any binary search procedure and prove that it can converge to a weak solution at a global rate of $O(\epsilon^{-2/(p+1)})$. A lower bound of $\Omega(\epsilon^{-2/(p+1)})$ is also established to show that our method is optimal in the monotone setting. A version with restarting attains a global linear and local superlinear convergence rate for smooth and strongly monotone VIs. Moreover, our method can achieve a global rate of $O(\epsilon^{-2/p})$ for solving smooth and non-monotone VIs satisfying the Minty condition; moreover, the restarted version again attains a global linear and local superlinear convergence rate if the strong Minty condition holds.
Recent work has shown that finite mixture models with $m$ components are identifiable, while making no assumptions on the mixture components, so long as one has access to groups of samples of size $2m-1$ which are known to come from the same mixture component. In this work we generalize that result and show that, if every subset of $k$ mixture components of a mixture model are linearly independent, then that mixture model is identifiable with only $(2m-1)/(k-1)$ samples per group. We further show that this value cannot be improved. We prove an analogous result for a stronger form of identifiability known as "determinedness" along with a corresponding lower bound. This independence assumption almost surely holds if mixture components are chosen randomly from a $k$-dimensional space. We describe some implications of our results for multinomial mixture models and topic modeling.
In dynamical systems, it is advantageous to identify regions of flow which can exhibit maximal influence on nearby behaviour. Hyperbolic Lagrangian Coherent Structures have been introduced to obtain two-dimensional surfaces which maximise repulsion or attraction in three-dimensional dynamical systems with arbitrary time-dependence. However, the numerical method to compute them requires obtaining derivatives associated with the system, often performed through the approximation of divided differences, which can lead to significant numerical error and numerical noise. In this paper, we introduce a novel method for the numerical calculation of hyperbolic Lagrangian Coherent Structures using Differential Algebra called DA-LCS. As a form of automatic forward differentiation, it allows direct computation of the Taylor expansion of the flow, its derivatives, and the eigenvectors of the associated strain tensor, with all derivatives obtained algebraically and to machine precision. It does so without a priori information about the system, such as variational equations or explicit derivatives. We demonstrate that this can provide significant improvements in the accuracy of the Lagrangian Coherent Structures identified compared to finite-differencing methods in a series of test cases drawn from the literature. We also show how DA-LCS uncovers additional dynamical behaviour in a real-world example drawn from astrodynamics.
The hypergraph Moore bound is an elegant statement that characterizes the extremal trade-off between the girth - the number of hyperedges in the smallest cycle or even cover (a subhypergraph with all degrees even) and size - the number of hyperedges in a hypergraph. For graphs (i.e., $2$-uniform hypergraphs), a bound tight up to the leading constant was proven in a classical work of Alon, Hoory and Linial [AHL02]. For hypergraphs of uniformity $k>2$, an appropriate generalization was conjectured by Feige [Fei08]. The conjecture was settled up to an additional $\log^{4k+1} n$ factor in the size in a recent work of Guruswami, Kothari and Manohar [GKM21]. Their argument relies on a connection between the existence of short even covers and the spectrum of a certain randomly signed Kikuchi matrix. Their analysis, especially for the case of odd $k$, is significantly complicated. In this work, we present a substantially simpler and shorter proof of the hypergraph Moore bound. Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion step that allows us to drop several involved steps in [GKM21]'s analysis such as combinatorial bucketing of rows of the Kikuchi matrix and the use of the Schudy-Sviridenko polynomial concentration. Our simpler proof also obtains tighter parameters: in particular, the argument gives a new proof of the classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a $\log^3 n$ factor), and loses only a single logarithmic factor for all $k>2$-uniform hypergraphs. As in [GKM21], our ideas naturally extend to yield a simpler proof of the full trade-off for strongly refuting smoothed instances of constraint satisfaction problems with similarly improved parameters.
The Heuristic Rating Estimation Method enables decision-makers to decide based on existing ranking data and expert comparisons. In this approach, the ranking values of selected alternatives are known in advance, while these values have to be calculated for the remaining ones. Their calculation can be performed using either an additive or a multiplicative method. Both methods assumed that the pairwise comparison sets involved in the computation were complete. In this paper, we show how these algorithms can be extended so that the experts do not need to compare all alternatives pairwise. Thanks to the shortening of the work of experts, the presented, improved methods will reduce the costs of the decision-making procedure and facilitate and shorten the stage of collecting decision-making data.