亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In online advertisement, ad campaigns are sequentially displayed to users. Both users and campaigns have inherent features, and the former is eligible to the latter if they are ``similar enough''. We model these interactions as a bipartite geometric random graph: the features of the $2N$ vertices ($N$ users and $N$ campaigns) are drawn independently in a metric space and an edge is present between a campaign and a user node if the distance between their features is smaller than $c/N$, where $c>0$ is the parameter of the model. Our contributions are two-fold. In the one-dimensional case, with uniform distribution over the segment $[0,1]$, we derive the size of the optimal offline matching in these bipartite random geometric graphs, and we build an algorithm achieving it (as a benchmark), and analyze precisely its performance. We then turn to the online setting where one side of the graph is known at the beginning while the other part is revealed sequentially. We study the number of matches of the online algorithm closest, which matches any incoming point to its closest available neighbor. We show that its performances can be compared to its fluid limit, completely described as the solution of an explicit PDE. From the latter, we can compute the competitive ratio of closest.

相關內容

Many advancements have been made in procedural content generation for games, and with mixed-initiative co-creativity, have the potential for great benefits to human designers. However, co-creative systems for game generation are typically limited to specific genres, rules, or games, limiting the creativity of the designer. We seek to model games abstractly enough to apply to any genre, focusing on designing game systems and mechanics, and create a controllable, co-creative agent that can collaborate on these designs. We present a model of games using state-machine-like components and resource flows, a set of controllable metrics, a design evaluator simulating playthroughs with these metrics, and an evolutionary design balancer and generator. We find this system to be both able to express a wide range of games and able to be human-controllable for future co-creative applications.

Intelligent systems have become a major part of our lives. Human responsibility for outcomes becomes unclear in the interaction with these systems, as parts of information acquisition, decision-making, and action implementation may be carried out jointly by humans and systems. Determining human causal responsibility with intelligent systems is particularly important in events that end with adverse outcomes. We developed three measures of retrospective human causal responsibility when using intelligent systems. The first measure concerns repetitive human interactions with a system. Using information theory, it quantifies the average human's unique contribution to the outcomes of past events. The second and third measures concern human causal responsibility in a single past interaction with an intelligent system. They quantify, respectively, the unique human contribution in forming the information used for decision-making and the reasonability of the actions that the human carried out. The results show that human retrospective responsibility depends on the combined effects of system design and its reliability, the human's role and authority, and probabilistic factors related to the system and the environment. The new responsibility measures can serve to investigate and analyze past events involving intelligent systems. They may aid the judgment of human responsibility and ethical and legal discussions, providing a novel quantitative perspective.

Online communities are not safe spaces for user privacy. Even though existing research focuses on creating and improving various content moderation strategies and privacy preserving technologies, platforms hosting online communities support features allowing users to surveil one another--leading to harassment, personal data breaches, and offline harm. To tackle this problem, we introduce a new, work-in-progress framework for analyzing data privacy within vulnerable, identity-based online communities. Where current SOUPS papers study surveillance and longitudinal user data as two distinct challenges to user privacy, more work needs to be done in exploring the sites where surveillance and historical user data assemble. By synthesizing over 40 years of developments in the analysis of surveillance, we derive properties of online communities that enable the abuse of user data by fellow community members and suggest key steps to improving security for vulnerable users. Deploying this new framework on new and existing platforms will ensure that online communities are privacy-conscious and designed more inclusively.

Manipulated news online is a growing problem which necessitates the use of automated systems to curtail its spread. We argue that while misinformation and disinformation detection have been studied, there has been a lack of investment in the important open challenge of detecting harmful agendas in news articles; identifying harmful agendas is critical to flag news campaigns with the greatest potential for real world harm. Moreover, due to real concerns around censorship, harmful agenda detectors must be interpretable to be effective. In this work, we propose this new task and release a dataset, NewsAgendas, of annotated news articles for agenda identification. We show how interpretable systems can be effective on this task and demonstrate that they can perform comparably to black-box models.

Long-Term tracking is a hot topic in Computer Vision. In this context, competitive models are presented every year, showing a constant growth rate in performances, mainly measured in standardized protocols as Visual Object Tracking (VOT) and Object Tracking Benchmark (OTB). Fusion-trackers strategy has been applied over last few years for overcoming the known re-detection problem, turning out to be an important breakthrough. Following this approach, this work aims to generalize the fusion concept to an arbitrary number of trackers used as baseline trackers in the pipeline, leveraging a learning phase to better understand how outcomes correlate with each other, even when no target is present. A model and data independence conjecture will be evidenced in the manuscript, yielding a recall of 0.738 on LTB-50 dataset when learning from VOT-LT2022, and 0.619 by reversing the two datasets. In both cases, results are strongly competitive with state-of-the-art and recall turns out to be the first on the podium.

Search query classification, as an effective way to understand user intents, is of great importance in real-world online ads systems. To ensure a lower latency, a shallow model (e.g. FastText) is widely used for efficient online inference. However, the representation ability of the FastText model is insufficient, resulting in poor classification performance, especially on some low-frequency queries and tailed categories. Using a deeper and more complex model (e.g. BERT) is an effective solution, but it will cause a higher online inference latency and more expensive computing costs. Thus, how to juggle both inference efficiency and classification performance is obviously of great practical importance. To overcome this challenge, in this paper, we propose knowledge condensation (KC), a simple yet effective knowledge distillation framework to boost the classification performance of the online FastText model under strict low latency constraints. Specifically, we propose to train an offline BERT model to retrieve more potentially relevant data. Benefiting from its powerful semantic representation, more relevant labels not exposed in the historical data will be added into the training set for better FastText model training. Moreover, a novel distribution-diverse multi-expert learning strategy is proposed to further improve the mining ability of relevant data. By training multiple BERT models from different data distributions, it can respectively perform better at high, middle, and low-frequency search queries. The model ensemble from multi-distribution makes its retrieval ability more powerful. We have deployed two versions of this framework in JD search, and both offline experiments and online A/B testing from multiple datasets have validated the effectiveness of the proposed approach.

Surveillance videos and images are used for a broad set of applications, ranging from traffic analysis to crime detection. Extrinsic camera calibration data is important for most analysis applications. However, security cameras are susceptible to environmental conditions and small camera movements, resulting in a need for an automated re-calibration method that can account for these varying conditions. In this paper, we present an automated camera-calibration process leveraging a dictionary-based approach that does not require prior knowledge on any camera settings. The method consists of a custom implementation of a Spatial Transformer Network (STN) and a novel topological loss function. Experiments reveal that the proposed method improves the IoU metric by up to 12% w.r.t. a state-of-the-art model across five synthetic datasets and the World Cup 2014 dataset.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

北京阿比特科技有限公司