亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the rapidly evolving digital technology landscape, community-oriented wearable computing systems are emerging as a key tool for enhancing connectivity and interaction within communal spaces. This paper contributes to this burgeoning field by presenting the development and implementation of a proximity-based wearable computing testbed designed to forge stronger links within communities. The testbed exploits Ultra-Wideband (UWB) position sensors, 9-axis motion sensors, edge nodes, and a centralized server, forming a cohesive network that actively facilitates community interactions and engagements. By employing anchors and targets within the UWB sensors, the system achieves high precision in location and distance measurements, laying the groundwork for various proximity-based applications. Integrating 9-axis motion sensors and advanced edge nodes further underscores the system's versatility and robustness in wearable and edge computing. This paper delves into an in-depth exploration and evaluation of the proposed system's architecture, design, and implementation processes. It provides a comprehensive analysis of experimental results and discusses the system's potential impact on enhancing community networks, along with the future directions this technology could take.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

Wheeled bipedal robots (WBRs) have the capability to execute agile and versatile locomotion tasks. This paper focuses on improving the dynamic performance of WBRs through innovations in both hardware and software development. Inspired by the human barbell squat, a bionic mechanical design is proposed and implemented as shown in Fig. 1. It distributes the weight onto its hip and knee joints to improve the effectiveness of joint motors while maintaining a relatively large workspace of the base link. Meanwhile, a novel model-based controller is devised, synthesizing height-variable wheeled linear inverted pendulum (HV-wLIP) model, Control Lyapunov Function (CLF) and whole-body dynamics for theoretically guaranteed stability and efficient computation. Compared with other alternatives, as a more accurate approximation of the WBR dynamics, the HV-wLIP can enable more agile response and provide theory basis for WBR controller design. Experimental results demonstrate that the robot could perform human-like deep squat, and is capable of maintaining tracking CoM velocity while manipulating base states. Furthermore, it exhibited robustness against external disturbances and unknown terrains even in the wild.

As an emerging wireless communication technology, reconfigurable intelligent surface (RIS) has become a basic choice for providing signal coverage services in scenarios with dense obstacles or long tunnels through multi-hop configurations. Conventional works of literature mainly focus on alternating optimization or single-beam calculation in RIS phase configuration, which is limited in considering energy efficiency, and often suffers from inaccurate channel state information (CSI), poor convergence, and high computational complexity. This paper addresses the design and optimization challenges for successive RIS-assisted multi-hop systems. Specifically, we establish a general model for multi-hop communication based on the relationship between the input and output electric fields within each RIS. Meanwhile, we derive the half-power beamwidth of the RIS-reflected beams, considering the beam direction. Leveraging these models and derivations, we propose deployment optimization and beam optimization strategies for multi-hop systems, which feature high aperture efficiency and significant gains in signal power. Simulation and prototype experiment results validate the effectiveness and superiority of the proposed systems and methods.

Rapid developments in streaming data technologies have enabled real-time monitoring of human activity that can deliver high-resolution data on health variables over trajectories or paths carved out by subjects as they conduct their daily physical activities. Wearable devices, such as wrist-worn sensors that monitor gross motor activity, have become prevalent and have kindled the emerging field of ``spatial energetics'' in environmental health sciences. We devise a Bayesian inferential framework for analyzing such data while accounting for information available on specific spatial coordinates comprising a trajectory or path using a Global Positioning System (GPS) device embedded within the wearable device. We offer full probabilistic inference with uncertainty quantification using spatial-temporal process models adapted for data generated from ``actigraph'' units as the subject traverses a path or trajectory in their daily routine. Anticipating the need for fast inference for mobile health data, we pursue exact inference using conjugate Bayesian models and employ predictive stacking to assimilate inference across these individual models. This circumvents issues with iterative estimation algorithms such as Markov chain Monte Carlo. We devise Bayesian predictive stacking in this context for models that treat time as discrete epochs and that treat time as continuous. We illustrate our methods with simulation experiments and analysis of data from the Physical Activity through Sustainable Transport Approaches (PASTA-LA) study conducted by the Fielding School of Public Health at the University of California, Los Angeles.

LLM-based programming assistants offer the promise of programming faster but with the risk of introducing more security vulnerabilities. Prior work has studied how LLMs could be maliciously fine-tuned to suggest vulnerabilities more often. With the rise of agentic LLMs, which may use results from an untrusted third party, there is a growing risk of attacks on the model's prompt. We introduce the Malicious Programming Prompt (MaPP) attack, in which an attacker adds a small amount of text to a prompt for a programming task (under 500 bytes). We show that our prompt strategy can cause an LLM to add vulnerabilities while continuing to write otherwise correct code. We evaluate three prompts on seven common LLMs, from basic to state-of-the-art commercial models. Using the HumanEval benchmark, we find that our prompts are broadly effective, with no customization required for different LLMs. Furthermore, the LLMs that are best at HumanEval are also best at following our malicious instructions, suggesting that simply scaling language models will not prevent MaPP attacks. Using a dataset of eight CWEs in 16 scenarios, we find that MaPP attacks are also effective at implementing specific and targeted vulnerabilities across a range of models. Our work highlights the need to secure LLM prompts against manipulation as well as rigorously auditing code generated with the help of LLMs.

This paper discusses developments for a multi-limb morphogenetic UAV, MorphoGear, that is capable of both aerial flight and ground locomotion. A hybrid path planning algorithm based on A* strategy has been developed enabling seamless transition between air-to-ground navigation modes, thereby enhancing robot's mobility in complex environments. Moreover, precise path following is achieved during ground locomotion with a Model Predictive Control (MPC) architecture for its novel walking behaviour. Experimental validation was conducted in the Unity simulation environment utilizing Python scripts to compute control values. The algorithms' performance is validated by the Root Mean Squared Error (RMSE) of 0.91 cm and a maximum error of 1.85 cm, as demonstrated by the results. These developments highlight the adaptability of MorphoGear in navigation through cluttered environments, establishing it as a usable tool in autonomous exploration, both aerial and ground-based.

Recent advances in Deep Neural Networks (DNNs) and sensor technologies are enabling autonomous driving systems (ADSs) with an ever-increasing level of autonomy. However, assessing their dependability remains a critical concern. State-of-the-art ADS testing approaches modify the controllable attributes of a simulated driving environment until the ADS misbehaves. In such approaches, environment instances in which the ADS is successful are discarded, despite the possibility that they could contain hidden driving conditions in which the ADS may misbehave. In this paper, we present GENBO (GENerator of BOundary state pairs), a novel test generator for ADS testing. GENBO mutates the driving conditions of the ego vehicle (position, velocity and orientation), collected in a failure-free environment instance, and efficiently generates challenging driving conditions at the behavior boundary (i.e., where the model starts to misbehave) in the same environment instance. We use such boundary conditions to augment the initial training dataset and retrain the DNN model under test. Our evaluation results show that the retrained model has, on average, up to 3x higher success rate on a separate set of evaluation tracks with respect to the original DNN model.

Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司