亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the nonparametric regression problem when the covariates are located on an unknown smooth compact submanifold of a Euclidean space. Under defining a random geometric graph structure over the covariates we analyze the asymptotic frequentist behaviour of the posterior distribution arising from Bayesian priors designed through random basis expansion in the graph Laplacian eigenbasis. Under Holder smoothness assumption on the regression function and the density of the covariates over the submanifold, we prove that the posterior contraction rates of such methods are minimax optimal (up to logarithmic factors) for any positive smoothness index.

相關內容

Westudythestatisticalpropertiesoftheentropicoptimal(self) transport problem for smooth probability measures. We provide an accurate description of the limit distribution for entropic (self-)potentials and plans for shrinking regularization parameter, which strongly contrasts prior work where the regularization parameter is held fix. Additionally, we show that a rescaling of the barycentric projection of the empirical entropic optimal self-transport plans converges to the score function, a central object for diffusion models, and characterize the asymptotic fluctuations both pointwise and in L2. Finally, we describe under what conditions the methods used enable to derive (pointwise) limiting distribution results for the empirical entropic optimal transport potentials in the case of two different measures and appropriately chosen shrinking regularization parameter. This endeavour requires better understanding the composition of Sinkhorn operators, a result of independent interest.

This paper addresses the inverse scattering problem for Maxwell's equations. We first show that a bianisotropic scatterer can be uniquely determined from multi-static far-field data through the factorization analysis of the far-field operator. Next, we investigate a modified version of the orthogonality sampling method, as proposed in \cite{Le2022}, for the numerical reconstruction of the scatterer. Finally, we apply this sampling method to invert unprocessed 3D experimental data obtained from the Fresnel Institute \cite{Geffrin2009}. Numerical examples with synthetic scattering data for bianisotropic targets are also presented to demonstrate the effectiveness of the method.

A discrete spatial lattice can be cast as a network structure over which spatially-correlated outcomes are observed. A second network structure may also capture similarities among measured features, when such information is available. Incorporating the network structures when analyzing such doubly-structured data can improve predictive power, and lead to better identification of important features in the data-generating process. Motivated by applications in spatial disease mapping, we develop a new doubly regularized regression framework to incorporate these network structures for analyzing high-dimensional datasets. Our estimators can be easily implemented with standard convex optimization algorithms. In addition, we describe a procedure to obtain asymptotically valid confidence intervals and hypothesis tests for our model parameters. We show empirically that our framework provides improved predictive accuracy and inferential power compared to existing high-dimensional spatial methods. These advantages hold given fully accurate network information, and also with networks which are partially misspecified or uninformative. The application of the proposed method to modeling COVID-19 mortality data suggests that it can improve prediction of deaths beyond standard spatial models, and that it selects relevant covariates more often.

For several types of information relations, the induced rough sets system RS does not form a lattice but only a partially ordered set. However, by studying its Dedekind-MacNeille completion DM(RS), one may reveal new important properties of rough set structures. Building upon D. Umadevi's work on describing joins and meets in DM(RS), we previously investigated pseudo-Kleene algebras defined on DM(RS) for reflexive relations. This paper delves deeper into the order-theoretic properties of DM(RS) in the context of reflexive relations. We describe the completely join-irreducible elements of DM(RS) and characterize when DM(RS) is a spatial completely distributive lattice. We show that even in the case of a non-transitive reflexive relation, DM(RS) can form a Nelson algebra, a property generally associated with quasiorders. We introduce a novel concept, the core of a relational neighborhood, and use it to provide a necessary and sufficient condition for DM(RS) to determine a Nelson algebra.

Regularization is a critical technique for ensuring well-posedness in solving inverse problems with incomplete measurement data. Traditionally, the regularization term is designed based on prior knowledge of the unknown signal's characteristics, such as sparsity or smoothness. Inhomogeneous regularization, which incorporates a spatially varying exponent $p$ in the standard $\ell_p$-norm-based framework, has been used to recover signals with spatially varying features. This study introduces weighted inhomogeneous regularization, an extension of the standard approach incorporating a novel exponent design and spatially varying weights. The proposed exponent design mitigates misclassification when distinct characteristics are spatially close, while the weights address challenges in recovering regions with small-scale features that are inadequately captured by traditional $\ell_p$-norm regularization. Numerical experiments, including synthetic image reconstruction and the recovery of sea ice data from incomplete wave measurements, demonstrate the effectiveness of the proposed method.

An injective colouring of a graph is a colouring in which every two vertices sharing a common neighbour receive a different colour. Chen, Hahn, Raspaud and Wang conjectured that every planar graph of maximum degree $\Delta \ge 3$ admits an injective colouring with at most $\lfloor 3\Delta/2\rfloor$ colours. This was later disproved by Lu\v{z}ar and \v{S}krekovski for certain small and even values of $\Delta$ and they proposed a new refined conjecture. Using an algorithm for determining the injective chromatic number of a graph, i.e. the smallest number of colours for which the graph admits an injective colouring, we give computational evidence for Lu\v{z}ar and \v{S}krekovski's conjecture and extend their results by presenting an infinite family of $3$-connected planar graphs for each $\Delta$ (except for $4$) attaining their bound, whereas they only gave a finite amount of examples for each $\Delta$. Hence, together with another infinite family of maximum degree $4$, we provide infinitely many counterexamples to the conjecture by Chen et al. for each $\Delta$ if $4\le \Delta \le 7$ and every even $\Delta \ge 8$. We provide similar evidence for analogous conjectures by La and \v{S}torgel and Lu\v{z}ar, \v{S}krekovski and Tancer when the girth is restricted as well. Also in these cases we provide infinite families of $3$-connected planar graphs attaining the bounds of these conjectures for certain maximum degrees $\Delta\geq 3$.

We examine the last-iterate convergence rate of Bregman proximal methods - from mirror descent to mirror-prox and its optimistic variants - as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, non-monotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and non-zero Legendre exponent: the former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.

The digital twin approach has gained recognition as a promising solution to the challenges faced by the Architecture, Engineering, Construction, Operations, and Management (AECOM) industries. However, its broader application across AECOM sectors remains limited. One significant obstacle is that traditional digital twins rely on deterministic models, which require deterministic input parameters. This limits their accuracy, as they do not account for the substantial uncertainties inherent in AECOM projects. These uncertainties are particularly pronounced in geotechnical design and construction. To address this challenge, we propose a Probabilistic Digital Twin (PDT) framework that extends traditional digital twin methodologies by incorporating uncertainties, and is tailored to the requirements of geotechnical design and construction. The PDT framework provides a structured approach to integrating all sources of uncertainty, including aleatoric, data, model, and prediction uncertainties, and propagates them throughout the entire modeling process. To ensure that site-specific conditions are accurately reflected as additional information is obtained, the PDT leverages Bayesian methods for model updating. The effectiveness of the probabilistic digital twin framework is showcased through an application to a highway foundation construction project, demonstrating its potential to improve decision-making and project outcomes in the face of significant uncertainties.

In this paper, we consider a class of non-convex and non-smooth sparse optimization problems, which encompass most existing nonconvex sparsity-inducing terms. We show the second-order optimality conditions only depend on the nonzeros of the stationary points. We propose two damped iterative reweighted algorithms including the iteratively reweighted $\ell_1$ algorithm (DIRL$_1$) and the iteratively reweighted $\ell_2$ (DIRL$_2$) algorithm, to solve these problems. For DIRL$_1$, we show the reweighted $\ell_1$ subproblem has support identification property so that DIRL$_1$ locally reverts to a gradient descent algorithm around a stationary point. For DIRL$_2$, we show the solution map of the reweighted $\ell_2$ subproblem is differentiable and Lipschitz continuous everywhere. Therefore, the map of DIRL$_1$ and DIRL$_2$ and their inverse are Lipschitz continuous, and the strict saddle points are their unstable fixed points. By applying the stable manifold theorem, these algorithms are shown to converge only to local minimizers with randomly initialization when the strictly saddle point property is assumed.

The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.

北京阿比特科技有限公司