亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we evaluate the quality of knowledge representations encoded in deep neural networks (DNNs) for 3D point cloud processing. We propose a method to disentangle the overall model vulnerability into the sensitivity to the rotation, the translation, the scale, and local 3D structures. Besides, we also propose metrics to evaluate the spatial smoothness of encoding 3D structures, and the representation complexity of the DNN. Based on such analysis, experiments expose representation problems with classic DNNs, and explain the utility of the adversarial training.

相關內容

Processing 是(shi)一門開(kai)源編程語(yu)言和與之(zhi)配(pei)套的(de)集成開(kai)發環境(jing)(IDE)的(de)名稱(cheng)。Processing 在電子藝術和視覺設計社(she)區被(bei)用來教授編程基礎,并運用于大量的(de)新媒體和互動藝術作品中。

Three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications while obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in shape reconstruction, surface approximation, and geometry simplification. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at //github.com/chenzhaiyu/points2poly.

The rise of deep learning algorithms has led many researchers to withdraw from using classic signal processing methods for sound generation. Deep learning models have achieved expressive voice synthesis, realistic sound textures, and musical notes from virtual instruments. However, the most suitable deep learning architecture is still under investigation. The choice of architecture is tightly coupled to the audio representations. A sound's original waveform can be too dense and rich for deep learning models to deal with efficiently - and complexity increases training time and computational cost. Also, it does not represent sound in the manner in which it is perceived. Therefore, in many cases, the raw audio has been transformed into a compressed and more meaningful form using upsampling, feature-extraction, or even by adopting a higher level illustration of the waveform. Furthermore, conditional on the form chosen, additional conditioning representations, different model architectures, and numerous metrics for evaluating the reconstructed sound have been investigated. This paper provides an overview of audio representations applied to sound synthesis using deep learning. Additionally, it presents the most significant methods for developing and evaluating a sound synthesis architecture using deep learning models, always depending on the audio representation.

3D delineation of anatomical structures is a cardinal goal in medical imaging analysis. Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology. Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology. Today fully-convolutional networks (FCNs), while dominant, do not offer these capabilities. We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of convolutional neural networks (CNNs) with the robustness of SSMs. DISSMs use a deep implicit surface representation to produce a compact and descriptive shape latent space that permits statistical models of anatomical variance. To reliably fit anatomically plausible shapes to an image, we introduce a novel rigid and non-rigid pose estimation pipeline that is modelled as a Markov decision process(MDP). We outline a training regime that includes inverted episodic training and a deep realization of marginal space learning (MSL). Intra-dataset experiments on the task of pathological liver segmentation demonstrate that DISSMs can perform more robustly than three leading FCN models, including nnU-Net: reducing the mean Hausdorff distance (HD) by 7.7-14.3mm and improving the worst case Dice-Sorensen coefficient (DSC) by 1.2-2.3%. More critically, cross-dataset experiments on a dataset directly reflecting clinical deployment scenarios demonstrate that DISSMs improve the mean DSC and HD by 3.5-5.9% and 12.3-24.5mm, respectively, and the worst-case DSC by 5.4-7.3%. These improvements are over and above any benefits from representing delineations with high-quality surface.

The development of practical applications, such as autonomous driving and robotics, has brought increasing attention to 3D point cloud understanding. While deep learning has achieved remarkable success on image-based tasks, there are many unique challenges faced by deep neural networks in processing massive, unstructured and noisy 3D points. To demonstrate the latest progress of deep learning for 3D point cloud understanding, this paper summarizes recent remarkable research contributions in this area from several different directions (classification, segmentation, detection, tracking, flow estimation, registration, augmentation and completion), together with commonly used datasets, metrics and state-of-the-art performances. More information regarding this survey can be found at: //github.com/SHI-Labs/3D-Point-Cloud-Learning.

Point cloud is point sets defined in 3D metric space. Point cloud has become one of the most significant data format for 3D representation. Its gaining increased popularity as a result of increased availability of acquisition devices, such as LiDAR, as well as increased application in areas such as robotics, autonomous driving, augmented and virtual reality. Deep learning is now the most powerful tool for data processing in computer vision, becoming the most preferred technique for tasks such as classification, segmentation, and detection. While deep learning techniques are mainly applied to data with a structured grid, point cloud, on the other hand, is unstructured. The unstructuredness of point clouds makes use of deep learning for its processing directly very challenging. Earlier approaches overcome this challenge by preprocessing the point cloud into a structured grid format at the cost of increased computational cost or lost of depth information. Recently, however, many state-of-the-arts deep learning techniques that directly operate on point cloud are being developed. This paper contains a survey of the recent state-of-the-art deep learning techniques that mainly focused on point cloud data. We first briefly discussed the major challenges faced when using deep learning directly on point cloud, we also briefly discussed earlier approaches which overcome the challenges by preprocessing the point cloud into a structured grid. We then give the review of the various state-of-the-art deep learning approaches that directly process point cloud in its unstructured form. We introduced the popular 3D point cloud benchmark datasets. And we also further discussed the application of deep learning in popular 3D vision tasks including classification, segmentation and detection.

Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.

Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) procedure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.

We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.

Deep learning is increasingly used in decision-making tasks. However, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images often focuses on explaining predictions for single images or neurons. As predictions are often computed from millions of weights that are optimized over millions of images, such explanations can easily miss a bigger picture. We present Summit, an interactive system that scalably and systematically summarizes and visualizes what features a deep learning model has learned and how those features interact to make predictions. Summit introduces two new scalable summarization techniques: (1) activation aggregation discovers important neurons, and (2) neuron-influence aggregation identifies relationships among such neurons. Summit combines these techniques to create the novel attribution graph that reveals and summarizes crucial neuron associations and substructures that contribute to a model's outcomes. Summit scales to large data, such as the ImageNet dataset with 1.2M images, and leverages neural network feature visualization and dataset examples to help users distill large, complex neural network models into compact, interactive visualizations. We present neural network exploration scenarios where Summit helps us discover multiple surprising insights into a prevalent, large-scale image classifier's learned representations and informs future neural network architecture design. The Summit visualization runs in modern web browsers and is open-sourced.

In this paper, we propose a novel generative adversarial network (GAN) for 3D point clouds generation, which is called tree-GAN. To achieve state-of-the-art performance for multi-class 3D point cloud generation, a tree-structured graph convolution network (TreeGCN) is introduced as a generator for tree-GAN. Because TreeGCN performs graph convolutions within a tree, it can use ancestor information to boost the representation power for features. To evaluate GANs for 3D point clouds accurately, we develop a novel evaluation metric called Frechet point cloud distance (FPD). Experimental results demonstrate that the proposed tree-GAN outperforms state-of-the-art GANs in terms of both conventional metrics and FPD, and can generate point clouds for different semantic parts without prior knowledge.

北京阿比特科技有限公司